{"title":"Efficient Distributed Torque Computation for Large Scale Robot Skin","authors":"Florian Bergner, E. Dean-León, G. Cheng","doi":"10.1109/IROS.2018.8594144","DOIUrl":null,"url":null,"abstract":"The realization of a kinesthetic robot behavior using robot skin requires a reactive skin torque controller, which fuses skin information and robot information to an appropriate skin joint torque in real-time. This fusion of information in real-time is challenging when deploying large scale skin. In this paper, we present a system which efficiently computes the torque of distributed skin cells locally at the point of contacts, completely removing this complex computations from the real-time loop. We demonstrate the feasibility of realizing the skin joint torque computations on the local micro-controllers of the skin cells. Conducting experiments with a real robot, we compare the accuracy of the distributed skin joint torque computation with the computation on the control PC. We also show that the novel distributed approach completely eliminates the computational delay of computing skin joint torques in the robot's real-time control loop. As a result, this approach removes any limits for the maximum number of skin cells in control.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"18 1","pages":"1593-1599"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The realization of a kinesthetic robot behavior using robot skin requires a reactive skin torque controller, which fuses skin information and robot information to an appropriate skin joint torque in real-time. This fusion of information in real-time is challenging when deploying large scale skin. In this paper, we present a system which efficiently computes the torque of distributed skin cells locally at the point of contacts, completely removing this complex computations from the real-time loop. We demonstrate the feasibility of realizing the skin joint torque computations on the local micro-controllers of the skin cells. Conducting experiments with a real robot, we compare the accuracy of the distributed skin joint torque computation with the computation on the control PC. We also show that the novel distributed approach completely eliminates the computational delay of computing skin joint torques in the robot's real-time control loop. As a result, this approach removes any limits for the maximum number of skin cells in control.