Covariate balancing for causal inference on categorical and continuous treatments

IF 2 Q2 ECONOMICS
Seong-ho Lee , Yanyuan Ma , Xavier de Luna
{"title":"Covariate balancing for causal inference on categorical and continuous treatments","authors":"Seong-ho Lee ,&nbsp;Yanyuan Ma ,&nbsp;Xavier de Luna","doi":"10.1016/j.ecosta.2022.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 304-329"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.
分类和连续处理因果推理的协变量平衡
通过使用逆概率加权的最优协变量平衡策略,提出了分类和连续处理因果效应的新估计。当解释处理分配的模型被正确指定时,或者当选择了结果模型的正确基础集并且分配模型足够丰富时,结果估计量被证明是一致的并且对于感兴趣的因果对比是渐近正态的。对于分类处理情况,当所有模型都正确指定时,估计量获得了半参数效率界。对于连续情况,感兴趣的因果参数是治疗剂量的函数。后者没有参数化,并且所提出的估计量具有经典非参数率的偏差和方差。对渐近结果进行了模拟,说明了有限样本的性质。一项数据分析表明,BMI对老年人自我报告的健康状况下降有非线性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信