Real-time Implementation of Nonlinear Model Predictive Control for Mechatronic Systems Using a Hybrid Model

S. Löw, D. Obradovic
{"title":"Real-time Implementation of Nonlinear Model Predictive Control for Mechatronic Systems Using a Hybrid Model","authors":"S. Löw, D. Obradovic","doi":"10.1109/COASE.2018.8560359","DOIUrl":null,"url":null,"abstract":"Nonlinear Model Predictive Control (NMPC) is an aspiring control method for the implementation of advanced controller behavior. The present work shows the symbolic math implementation of a mechatronic system model containing aerodynamic nonlinearities modeled by Feedforward Neural Networks. Gradients for the optimization are obtained efficiently by exploiting the feedforward property of the Neural Networks and symbolic computation. Current research on the implementation of damage metrics into the cost function is stated briefly. In order to achieve real-time capability, the method Real-time Iteration is used.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"18 1","pages":"164-167"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nonlinear Model Predictive Control (NMPC) is an aspiring control method for the implementation of advanced controller behavior. The present work shows the symbolic math implementation of a mechatronic system model containing aerodynamic nonlinearities modeled by Feedforward Neural Networks. Gradients for the optimization are obtained efficiently by exploiting the feedforward property of the Neural Networks and symbolic computation. Current research on the implementation of damage metrics into the cost function is stated briefly. In order to achieve real-time capability, the method Real-time Iteration is used.
基于混合模型的机电系统非线性模型预测控制实时实现
非线性模型预测控制(NMPC)是实现高级控制器行为的一种有抱负的控制方法。本文展示了用前馈神经网络建立的包含气动非线性的机电系统模型的符号数学实现。利用神经网络的前馈特性和符号计算,有效地获得了优化的梯度。简要介绍了目前在代价函数中实现损伤度量的研究现状。为了达到实时性,采用了实时迭代的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信