Rational Construction of Stochastic Numerical Methods for Molecular Sampling

B. Leimkuhler, Charles Matthews
{"title":"Rational Construction of Stochastic Numerical Methods for Molecular Sampling","authors":"B. Leimkuhler, Charles Matthews","doi":"10.1093/amrx/abs010","DOIUrl":null,"url":null,"abstract":"In this article, we focus on the sampling of the configurational Gibbs-Boltzmann distribution, that is, the calculation of averages of functions of the position coordinates of a molecular $N$-body system modelled at constant temperature. We show how a formal series expansion of the invariant measure of a Langevin dynamics numerical method can be obtained in a straightforward way using the Baker-Campbell-Hausdorff lemma. We then compare Langevin dynamics integrators in terms of their invariant distributions and demonstrate a superconvergence property (4th order accuracy where only 2nd order would be expected) of one method in the high friction limit; this method, moreover, can be reduced to a simple modification of the Euler-Maruyama method for Brownian dynamics involving a non-Markovian (coloured noise) random process. In the Brownian dynamics case, 2nd order accuracy of the invariant density is achieved. All methods considered are efficient for molecular applications (requiring one force evaluation per timestep) and of a simple form. In fully resolved (long run) molecular dynamics simulations, for our favoured method, we observe up to two orders of magnitude improvement in configurational sampling accuracy for given stepsize with no evident reduction in the size of the largest usable timestep compared to common alternative methods.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"12 1","pages":"34-56"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"200","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abs010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 200

Abstract

In this article, we focus on the sampling of the configurational Gibbs-Boltzmann distribution, that is, the calculation of averages of functions of the position coordinates of a molecular $N$-body system modelled at constant temperature. We show how a formal series expansion of the invariant measure of a Langevin dynamics numerical method can be obtained in a straightforward way using the Baker-Campbell-Hausdorff lemma. We then compare Langevin dynamics integrators in terms of their invariant distributions and demonstrate a superconvergence property (4th order accuracy where only 2nd order would be expected) of one method in the high friction limit; this method, moreover, can be reduced to a simple modification of the Euler-Maruyama method for Brownian dynamics involving a non-Markovian (coloured noise) random process. In the Brownian dynamics case, 2nd order accuracy of the invariant density is achieved. All methods considered are efficient for molecular applications (requiring one force evaluation per timestep) and of a simple form. In fully resolved (long run) molecular dynamics simulations, for our favoured method, we observe up to two orders of magnitude improvement in configurational sampling accuracy for given stepsize with no evident reduction in the size of the largest usable timestep compared to common alternative methods.
分子抽样随机数值方法的合理构造
在本文中,我们重点研究了构型吉布斯-玻尔兹曼分布的抽样,即在恒温下建模的分子-体系统的位置坐标函数的平均值的计算。我们展示了如何使用Baker-Campbell-Hausdorff引理以直接的方式获得Langevin动力学数值方法不变测度的形式级数展开式。然后,我们比较了Langevin动力学积分器的不变分布,并证明了一种方法在高摩擦极限下的超收敛性(四阶精度,只有二阶精度);此外,该方法可以简化为对涉及非马尔可夫随机过程的布朗动力学的欧拉-丸山方法的简单修改。在布朗动力学情况下,实现了不变密度的二阶精度。所考虑的所有方法对于分子应用都是有效的(每个时间步需要一次力评估),并且形式简单。在完全解析(长期运行)的分子动力学模拟中,对于我们喜欢的方法,我们观察到对于给定步长,构型采样精度提高了两个数量级,与常见的替代方法相比,最大可用时间步长的大小没有明显减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信