Existence of Two View Chiral Reconstructions

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Andrew Pryhuber, Rainer Sinn, Rekha R. Thomas
{"title":"Existence of Two View Chiral Reconstructions","authors":"Andrew Pryhuber, Rainer Sinn, Rekha R. Thomas","doi":"10.1137/20m1381848","DOIUrl":null,"url":null,"abstract":"A fundamental question in computer vision is whether a set of point pairs is the image of a scene that lies in front of two cameras. Such a scene and the cameras together are known as a chiral reconstruction of the point pairs. In this paper we provide a complete classification of k point pairs for which a chiral reconstruction exists. The existence of chiral reconstructions is equivalent to the non-emptiness of certain semialgebraic sets. For up to three point pairs, we prove that a chiral reconstruction always exists while the set of five or more point pairs that do not have a chiral reconstruction is Zariski-dense. We show that for five generic point pairs, the chiral region is bounded by line segments in a Schlafli double six on a cubic surface with 27 real lines. Four point pairs have a chiral reconstruction unless they belong to two non-generic combinatorial types, in which case they may or may not.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1381848","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

A fundamental question in computer vision is whether a set of point pairs is the image of a scene that lies in front of two cameras. Such a scene and the cameras together are known as a chiral reconstruction of the point pairs. In this paper we provide a complete classification of k point pairs for which a chiral reconstruction exists. The existence of chiral reconstructions is equivalent to the non-emptiness of certain semialgebraic sets. For up to three point pairs, we prove that a chiral reconstruction always exists while the set of five or more point pairs that do not have a chiral reconstruction is Zariski-dense. We show that for five generic point pairs, the chiral region is bounded by line segments in a Schlafli double six on a cubic surface with 27 real lines. Four point pairs have a chiral reconstruction unless they belong to two non-generic combinatorial types, in which case they may or may not.
两视图手性重构的存在性
计算机视觉中的一个基本问题是,一组点对是否就是两个摄像头前的场景图像。这样的场景和摄像机一起被称为点对的手性重建。本文给出了存在手性重构的k个点对的完全分类。手性重构的存在性等价于某些半代数集的非空性。对于最多3个点对,我们证明了一个手性重构总是存在的,而5个或5个以上没有手性重构的点对的集合是zariski密集的。我们证明了在27条实线的三次曲面上,对于5个一般点对,手性区域以Schlafli双六线段为界。四个点对具有手性重构,除非它们属于两个非泛型组合类型,在这种情况下,它们可能是也可能不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信