Elad Levintal, Y. Ganot, G. Taylor, P. Freer-Smith, K. Suvočarev, H. Dahlke
{"title":"An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture","authors":"Elad Levintal, Y. Ganot, G. Taylor, P. Freer-Smith, K. Suvočarev, H. Dahlke","doi":"10.5194/SOIL-2021-72","DOIUrl":null,"url":null,"abstract":"Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/SOIL-2021-72","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.
期刊介绍:
Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science.
Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.