{"title":"Detecting and preventing inference attacks in online social networks: A data-driven and holistic framework","authors":"Xiaoyun He, Haibing Lu","doi":"10.1080/15536548.2017.1357383","DOIUrl":null,"url":null,"abstract":"ABSTRACT With increasing user involvement, social networks nowadays serve as a repository of all kinds of information. While there have been various studies demonstrating that private information can be inferred from social networks, few have taken a holistic view on designing mechanisms to detect and alleviate the inference attacks. In this study, we present a framework that leverages the social network data and data mining techniques to proactively detect and prevent possible inference attacks against users. A novel method is proposed to minimize the modifications to user profiles in order to prevent inference attacks while preserving the utility.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":"34 1","pages":"104 - 119"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15536548.2017.1357383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT With increasing user involvement, social networks nowadays serve as a repository of all kinds of information. While there have been various studies demonstrating that private information can be inferred from social networks, few have taken a holistic view on designing mechanisms to detect and alleviate the inference attacks. In this study, we present a framework that leverages the social network data and data mining techniques to proactively detect and prevent possible inference attacks against users. A novel method is proposed to minimize the modifications to user profiles in order to prevent inference attacks while preserving the utility.
期刊介绍:
As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.