Superstability of Kannappan's and Van vleck's functional equations

Belfakih Keltouma, E. Elhoucien, T. Rassias, R. Ahmed
{"title":"Superstability of Kannappan's and Van vleck's functional equations","authors":"Belfakih Keltouma, E. Elhoucien, T. Rassias, R. Ahmed","doi":"10.22436/JNSA.011.07.03","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the superstability theorems of the functional equations μ(y)f(xσ(y)z0)± f(xyz0) = 2f(x)f(y), x,y ∈ S, μ(y)f(σ(y)xz0)± f(xyz0) = 2f(x)f(y), x,y ∈ S, where S is a semigroup, σ is an involutive morphism of S, and μ : S −→ C is a bounded multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S, and z0 is in the center of S.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"19 1","pages":"894-915"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.07.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we prove the superstability theorems of the functional equations μ(y)f(xσ(y)z0)± f(xyz0) = 2f(x)f(y), x,y ∈ S, μ(y)f(σ(y)xz0)± f(xyz0) = 2f(x)f(y), x,y ∈ S, where S is a semigroup, σ is an involutive morphism of S, and μ : S −→ C is a bounded multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S, and z0 is in the center of S.
Kannappan和Van vleck泛函方程的超稳定性
本文证明了泛函方程μ(y)f(xσ(y)z0)±f(xyz0) = 2f(x)f(y), x,y∈S, μ(y)f(σ(y)xz0)±f(xyz0) = 2f(x)f(y), x,y∈S的超稳定性定理,其中S是半群,σ是S的对合态射,μ: S−→C是一个有界乘法函数,使得μ(xσ(x))对所有x∈S都= 1,z0在S的中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信