{"title":"Extraordinary optical transmission of ultra-thin freestanding plasmonic membranes","authors":"Longju Liu, Hsin-Yu Wu, Meng Lu","doi":"10.1364/CLEO_SI.2017.SM3N.2","DOIUrl":null,"url":null,"abstract":"We demonstrate an ultra-thin freestanding plasmonic membrane that supports surface plasmon resonances. The 30 nm-thick membrane is perforated with an array of holes using the imprint-and-transfer approach. The fabricated plasmonic membrane exhibits extraordinary optical transmissions in the mid-wave infrared wavelength range and can be used as an optical sensor to measure the absorption of a thin polymer film.","PeriodicalId":6652,"journal":{"name":"2017 Conference on Lasers and Electro-Optics (CLEO)","volume":"90 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEO_SI.2017.SM3N.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We demonstrate an ultra-thin freestanding plasmonic membrane that supports surface plasmon resonances. The 30 nm-thick membrane is perforated with an array of holes using the imprint-and-transfer approach. The fabricated plasmonic membrane exhibits extraordinary optical transmissions in the mid-wave infrared wavelength range and can be used as an optical sensor to measure the absorption of a thin polymer film.