{"title":"Balun's effect on the measurement of transmission characteristics for intrabody communication channel","authors":"J. Sakai, Linsheng Wu, Hucheng Sun, Yong-xin Guo","doi":"10.1109/IMWS-BIO.2013.6756245","DOIUrl":null,"url":null,"abstract":"Intrabody communication (IBC) is a promising technology that enables the improvement of digital healthcare devices. IBC uses the human body as a transmission media, and the accurate transmission model is important for the design of transceivers. In the measurements of transmission characteristics, baluns have been widely used to separate the grounds of transmitter and receiver. In this work, we analyze the balun's effect on the measured results of capacitive IBC channel. Baluns and balun boards used in our measurements have the parasitic common-mode capacitances, ranging from 1.1 to 32 pF, which affects the measured transmission level of the IBC channel, leading to a significant difference of about 40 dB.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"14 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Intrabody communication (IBC) is a promising technology that enables the improvement of digital healthcare devices. IBC uses the human body as a transmission media, and the accurate transmission model is important for the design of transceivers. In the measurements of transmission characteristics, baluns have been widely used to separate the grounds of transmitter and receiver. In this work, we analyze the balun's effect on the measured results of capacitive IBC channel. Baluns and balun boards used in our measurements have the parasitic common-mode capacitances, ranging from 1.1 to 32 pF, which affects the measured transmission level of the IBC channel, leading to a significant difference of about 40 dB.