Experimental analysis and optimization of process parameters using response surface methodology of surface nanocomposites fabricated by friction stir processing

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
Ravi Butola, Kapil Dev Pandey, Q. Murtaza, R. S. Walia, M. Tyagi, K. Srinivas, A. Chaudhary
{"title":"Experimental analysis and optimization of process parameters using response surface methodology of surface nanocomposites fabricated by friction stir processing","authors":"Ravi Butola, Kapil Dev Pandey, Q. Murtaza, R. S. Walia, M. Tyagi, K. Srinivas, A. Chaudhary","doi":"10.1177/23977914231151485","DOIUrl":null,"url":null,"abstract":"In the present research work, microhardness and ultimate tensile strength of the aluminum based metal surface nanocomposites is studied using response surface methodology. Aluminum alloy 5083 is used as a matrix material, boron carbide nanoparticles as a reinforcement and surface nanocomposites are fabricated using Friction stir processing (FSP). Central composite design (CCD) matrix is used to prepare a design of experiment with three process parameters/factors that is, Tool rotational speed, Tool traverse speed, and Number of passes, having three level each. The nanocomposite fabricated according to design of experiment are analyzed using Response surface methodology (RSM). The developed mathematical model well fitted experimental values and equations are stated by the model to predict the microhardness and ultimate tensile strength of the surface nanocomposites. The predicted value by the model and actual tested values are in close agreement. The developed model predicted that the optimum nanocomposites is to be fabricated at 1300 rpm tool rotational speed with a tool traverse speed of 30 mm/min and no of passes should be three times, in order to achieve enhance ultimate tensile strength and microhardness.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231151485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present research work, microhardness and ultimate tensile strength of the aluminum based metal surface nanocomposites is studied using response surface methodology. Aluminum alloy 5083 is used as a matrix material, boron carbide nanoparticles as a reinforcement and surface nanocomposites are fabricated using Friction stir processing (FSP). Central composite design (CCD) matrix is used to prepare a design of experiment with three process parameters/factors that is, Tool rotational speed, Tool traverse speed, and Number of passes, having three level each. The nanocomposite fabricated according to design of experiment are analyzed using Response surface methodology (RSM). The developed mathematical model well fitted experimental values and equations are stated by the model to predict the microhardness and ultimate tensile strength of the surface nanocomposites. The predicted value by the model and actual tested values are in close agreement. The developed model predicted that the optimum nanocomposites is to be fabricated at 1300 rpm tool rotational speed with a tool traverse speed of 30 mm/min and no of passes should be three times, in order to achieve enhance ultimate tensile strength and microhardness.
基于响应面法的搅拌摩擦表面纳米复合材料工艺参数实验分析与优化
本文采用响应面法研究了铝基金属表面纳米复合材料的显微硬度和极限抗拉强度。以5083铝合金为基体材料,碳化硼纳米颗粒为增强材料,采用搅拌摩擦工艺(FSP)制备表面纳米复合材料。采用中心复合设计(CCD)矩阵编制有刀具转速、刀具横移速度和经过次数三个工艺参数/因素的实验设计,每个工艺参数/因素有三个层次。采用响应面法对实验设计制备的纳米复合材料进行了分析。所建立的数学模型与实验值和方程拟合良好,可用于预测表面纳米复合材料的显微硬度和极限拉伸强度。模型预测值与实测值吻合较好。该模型预测,在刀具转速为1300转/分、刀具横移速度为30 mm/min、不经过3道次的条件下制备纳米复合材料,可提高材料的极限拉伸强度和显微硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信