Elmer Calle Chojeda, José Oliden Semino, William Ipanaqué Alama
{"title":"Control de un sistema multivariable no lineal y en fase no mínima empleando un controlador predictivo neuronal","authors":"Elmer Calle Chojeda, José Oliden Semino, William Ipanaqué Alama","doi":"10.4995/riai.2022.17375","DOIUrl":null,"url":null,"abstract":"En este artículo se propone un Controlador Predictivo Neuronal (ANN-MPC) para controlar un sistema no lineal de tanque cuádruple, el cual es complejo de controlar debido a la no linealidad de sus válvulas y a la interacción entre sus variables controladas. Además, el problema se agrava ya que el proceso presenta una respuesta transitoria con dinámica inversa por estar en fase no mínima. El ANN-MPC emplea una estructura modular de red neuronal artificial y el algoritmo de entrenamiento Levenberg-Marquardt para estimar con mayor precisión y rapidez las salidas del proceso no lineal y evitar el sobreajuste del modelo. Se generaron datos operativos a partir de la planta para entrenar la red neuronal empleando Matlab. Se probó el rendimiento del ANN-MPC ante cambios de referencia y se comparó con un MPC lineal y un MPC no lineal. Los resultados de simulación mostraron que el ANN-MPC produjo un menor tiempo de establecimiento que el MPC lineal y generó valores RMSE de las salidas similares a los del NMPC. Además, se redujo el tiempo de cómputo requerido para calcular la variable de control óptima comparado con el NMPC.","PeriodicalId":54463,"journal":{"name":"Revista Iberoamericana De Automatica E Informatica Industrial","volume":"39 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iberoamericana De Automatica E Informatica Industrial","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4995/riai.2022.17375","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
En este artículo se propone un Controlador Predictivo Neuronal (ANN-MPC) para controlar un sistema no lineal de tanque cuádruple, el cual es complejo de controlar debido a la no linealidad de sus válvulas y a la interacción entre sus variables controladas. Además, el problema se agrava ya que el proceso presenta una respuesta transitoria con dinámica inversa por estar en fase no mínima. El ANN-MPC emplea una estructura modular de red neuronal artificial y el algoritmo de entrenamiento Levenberg-Marquardt para estimar con mayor precisión y rapidez las salidas del proceso no lineal y evitar el sobreajuste del modelo. Se generaron datos operativos a partir de la planta para entrenar la red neuronal empleando Matlab. Se probó el rendimiento del ANN-MPC ante cambios de referencia y se comparó con un MPC lineal y un MPC no lineal. Los resultados de simulación mostraron que el ANN-MPC produjo un menor tiempo de establecimiento que el MPC lineal y generó valores RMSE de las salidas similares a los del NMPC. Además, se redujo el tiempo de cómputo requerido para calcular la variable de control óptima comparado con el NMPC.
期刊介绍:
La Revista Iberoamericana de Automática e Informática Industrial (RIAI) es el órgano de expresión del Comité Español de Automática (CEA), miembro de la Federación Internacional de Control Automático (IFAC). La revista se desarrolla en el marco de la comunidad iberoamericana, y en general, en los entornos en los que el español constituye el idioma básico y no excluyente de comunicación. RIAI engloba las siguientes temáticas:
• Teoría de control y sistemas.
• Ingeniería de control de procesos e instrumentación.
• Técnicas de control avanzado.
• Automatización y control de sistemas de producción.
• Robótica y sistemas robotizados.
• Arquitecturas de control y tecnología de computadores aplicada al control automático de sistemas.
• Sistemas de tiempo real e informática industrial aplicados al control automático de sistemas.
• Filtrado, estimación y análisis y tratamiento de señales e imágenes aplicados al control automático de sistemas.
• Visión por computador aplicada al control automático de sistemas.
• Modelado, identificación, simulación y optimización de sistemas.
• Inteligencia computacional y técnicas de supervisión y detección de fallos aplicados al control automático de sistemas.
• Historia de la automática. La automática en sistemas sociales, económicos y empresariales.
• Cuestiones docentes y de formación en automática.
• Control de sistemas en red y complejos a gran escala.
• Control automático de procesos industriales, sistemas energéticos, mineros, ingeniería civil y edificios.
• Control automático de sistemas de transporte y vehículos.
• Control automático en bioingeniería, biología, agricultura, ecología y medicina.
• Control automático de máquinas y motores y mecatrónica.