Underwater Image Enhancement Using Pre-trained Transformer

Abderrahmene Boudiaf, Yu Guo, Adarsh Ghimire, N. Werghi, G. Masi, S. Javed, J. Dias
{"title":"Underwater Image Enhancement Using Pre-trained Transformer","authors":"Abderrahmene Boudiaf, Yu Guo, Adarsh Ghimire, N. Werghi, G. Masi, S. Javed, J. Dias","doi":"10.48550/arXiv.2204.04199","DOIUrl":null,"url":null,"abstract":"The goal of this work is to apply a denoising image transformer to remove the distortion from underwater images and compare it with other similar approaches. Automatic restoration of underwater images plays an important role since it allows to increase the quality of the images, without the need for more expensive equipment. This is a critical example of the important role of the machine learning algorithms to support marine exploration and monitoring, reducing the need for human intervention like the manual processing of the images, thus saving time, effort, and cost. This paper is the first application of the image transformer-based approach called\"Pre-Trained Image Processing Transformer\"to underwater images. This approach is tested on the UFO-120 dataset, containing 1500 images with the corresponding clean images.","PeriodicalId":74527,"journal":{"name":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","volume":"15 1","pages":"480-488"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.04199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The goal of this work is to apply a denoising image transformer to remove the distortion from underwater images and compare it with other similar approaches. Automatic restoration of underwater images plays an important role since it allows to increase the quality of the images, without the need for more expensive equipment. This is a critical example of the important role of the machine learning algorithms to support marine exploration and monitoring, reducing the need for human intervention like the manual processing of the images, thus saving time, effort, and cost. This paper is the first application of the image transformer-based approach called"Pre-Trained Image Processing Transformer"to underwater images. This approach is tested on the UFO-120 dataset, containing 1500 images with the corresponding clean images.
水下图像增强使用预训练变压器
本工作的目标是应用去噪图像转换器来去除水下图像的失真,并将其与其他类似方法进行比较。水下图像的自动恢复起着重要的作用,因为它可以提高图像的质量,而不需要更昂贵的设备。这是机器学习算法在支持海洋勘探和监测方面发挥重要作用的一个重要例子,减少了对人工干预(如手动处理图像)的需求,从而节省了时间、精力和成本。本文首次将基于图像变换的“预训练图像处理变换”方法应用于水下图像。该方法在UFO-120数据集上进行了测试,该数据集包含1500张图像和相应的干净图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信