An easy proof of Greibach normal form

Q4 Mathematics
Andrzej Ehrenfeucht, Grzegorz Rozenberg
{"title":"An easy proof of Greibach normal form","authors":"Andrzej Ehrenfeucht,&nbsp;Grzegorz Rozenberg","doi":"10.1016/S0019-9958(84)80013-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present an algorithm which given an arbitrary <em>A</em>-free context-free grammar produces an equivalent context-free grammar in 2 Greibach normal form. The upper bound on the size of the resulting grammar in terms of the size of the initially given grammar is given. Our algorithm consists of an elementary construction, while the upper bound on the size of the resulting grammar is not bigger than the bounds known for other algorithms for converting context-free grammars into equivalent context-free grammars in Greibach normal form.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(84)80013-3","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995884800133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

We present an algorithm which given an arbitrary A-free context-free grammar produces an equivalent context-free grammar in 2 Greibach normal form. The upper bound on the size of the resulting grammar in terms of the size of the initially given grammar is given. Our algorithm consists of an elementary construction, while the upper bound on the size of the resulting grammar is not bigger than the bounds known for other algorithms for converting context-free grammars into equivalent context-free grammars in Greibach normal form.

格雷巴赫范式的简单证明
我们提出了一种算法,给定任意A-free上下文无关语法,生成等价的2 Greibach范式的上下文无关语法。根据初始给定语法的大小,给出了结果语法大小的上界。我们的算法由一个基本结构组成,而结果语法大小的上界并不大于将上下文无关语法转换为等价的Greibach范式的上下文无关语法的其他算法的已知边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信