Kai Wang, Aftab Hussain, Zhiqiang Zuo, G. Xu, Ardalan Amiri Sani
{"title":"Graspan","authors":"Kai Wang, Aftab Hussain, Zhiqiang Zuo, G. Xu, Ardalan Amiri Sani","doi":"10.1145/3093336.3037744","DOIUrl":null,"url":null,"abstract":"There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most of the existing static analyses developed for these systems are simple checkers that find bugs based on pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been employed to improve checkers for systems code due to their complex implementations and poor scalability. In this paper, we revisit the scalability problem of interprocedural static analysis from a \"Big Data\" perspective. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing techniques to solve this traditional programming language problem. We develop Graspan, a disk-based parallel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on very large program graphs. We implement context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation of these analyses on large codebases such as Linux shows that their Graspan implementations scale to millions of lines of code and are much simpler than their original implementations. Moreover, we show that these analyses can be used to augment the existing checkers; these augmented checkers uncovered 132 new NULL pointer bugs and 1308 unnecessary NULL tests in Linux 4.4.0-rc5, PostgreSQL 8.3.9, and Apache httpd 2.2.18.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"2 1","pages":"389 - 404"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093336.3037744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6
Abstract
There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most of the existing static analyses developed for these systems are simple checkers that find bugs based on pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been employed to improve checkers for systems code due to their complex implementations and poor scalability. In this paper, we revisit the scalability problem of interprocedural static analysis from a "Big Data" perspective. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing techniques to solve this traditional programming language problem. We develop Graspan, a disk-based parallel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on very large program graphs. We implement context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation of these analyses on large codebases such as Linux shows that their Graspan implementations scale to millions of lines of code and are much simpler than their original implementations. Moreover, we show that these analyses can be used to augment the existing checkers; these augmented checkers uncovered 132 new NULL pointer bugs and 1308 unnecessary NULL tests in Linux 4.4.0-rc5, PostgreSQL 8.3.9, and Apache httpd 2.2.18.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).