Porting a commercial application to OpenCL: a case study

S. Krige, M. Mackey, Simon McIntosh-Smith, R. Sessions
{"title":"Porting a commercial application to OpenCL: a case study","authors":"S. Krige, M. Mackey, Simon McIntosh-Smith, R. Sessions","doi":"10.1145/2664666.2664669","DOIUrl":null,"url":null,"abstract":"The use of virtual screening to find new drug hits and leads has become commonplace within the pharmaceutical industry. 2D methods have largely been replaced by 3D ligand-based methods and by structure-based methods (docking) where a reliable protein structure is available. However, the computational cost of calculating 3D molecular similarities is much higher than that for 2D similarity methods, meaning that large amounts of computing power are needed to screen a reasonable number of virtual compounds in a useful time scale.\n In recent years, the popularity of graphical processing units (GPUs) has increased in the area of high performance computing, mainly for their attractive cost to performance ratio and the appearance of stable GPU coding frameworks. They are a promising solution for computationally-intense problems such as virtual screening. In collaboration, the University of Bristol and Cresset have ported the blazeV10 virtual screening commercial application to OpenCL, a framework for writing programs that execute across heterogeneous platforms using both CPUs and GPUs.\n We present results showing that our OpenCL port of blazeV10 can provide an up to 20-fold speedup when run on a recent off-the-shelf GPU, compared to a contemporary multi-core CPU. This not only reduces the time required to obtain results but also saves hardware cost and space. We discuss some of the difficulties encountered in porting this commercial application to work well across a range of CPUs and GPUs, present hardware comparisons, and give guidance on how to maximize performance while retaining full precision.","PeriodicalId":73497,"journal":{"name":"International Workshop on OpenCL","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664666.2664669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The use of virtual screening to find new drug hits and leads has become commonplace within the pharmaceutical industry. 2D methods have largely been replaced by 3D ligand-based methods and by structure-based methods (docking) where a reliable protein structure is available. However, the computational cost of calculating 3D molecular similarities is much higher than that for 2D similarity methods, meaning that large amounts of computing power are needed to screen a reasonable number of virtual compounds in a useful time scale. In recent years, the popularity of graphical processing units (GPUs) has increased in the area of high performance computing, mainly for their attractive cost to performance ratio and the appearance of stable GPU coding frameworks. They are a promising solution for computationally-intense problems such as virtual screening. In collaboration, the University of Bristol and Cresset have ported the blazeV10 virtual screening commercial application to OpenCL, a framework for writing programs that execute across heterogeneous platforms using both CPUs and GPUs. We present results showing that our OpenCL port of blazeV10 can provide an up to 20-fold speedup when run on a recent off-the-shelf GPU, compared to a contemporary multi-core CPU. This not only reduces the time required to obtain results but also saves hardware cost and space. We discuss some of the difficulties encountered in porting this commercial application to work well across a range of CPUs and GPUs, present hardware comparisons, and give guidance on how to maximize performance while retaining full precision.
将商业应用程序移植到OpenCL:一个案例研究
在制药行业,使用虚拟筛选来发现新药的成功和领先已经变得司空见惯。2D方法已经在很大程度上被基于3D配体的方法和基于结构的方法(对接)所取代,其中可靠的蛋白质结构是可用的。然而,计算三维分子相似度的计算成本远远高于二维相似度方法,这意味着需要大量的计算能力来在有用的时间尺度内筛选合理数量的虚拟化合物。近年来,图形处理单元(GPU)在高性能计算领域的普及程度越来越高,主要是因为其具有吸引力的性价比和稳定的GPU编码框架的出现。对于像虚拟筛选这样的计算密集型问题,它们是一个很有前途的解决方案。在合作中,布里斯托尔大学和克雷塞特大学将blazeV10虚拟筛选商业应用程序移植到OpenCL上,OpenCL是一个框架,用于编写使用cpu和gpu在异构平台上执行的程序。我们展示的结果表明,与当代多核CPU相比,我们的OpenCL blazeV10端口在最新的现成GPU上运行时可以提供高达20倍的加速。这不仅减少了获得结果所需的时间,而且节省了硬件成本和空间。我们讨论了在移植这个商业应用程序时遇到的一些困难,以便在一系列cpu和gpu上很好地工作,给出了硬件比较,并给出了如何在保持完全精度的同时最大化性能的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信