A comparison of spatial predictors when datasets could be very large

IF 11 Q1 STATISTICS & PROBABILITY
J. Bradley, N. Cressie, Tao Shi
{"title":"A comparison of spatial predictors when datasets could be very large","authors":"J. Bradley, N. Cressie, Tao Shi","doi":"10.1214/16-SS115","DOIUrl":null,"url":null,"abstract":"In this article, we review and compare a number of methods of spatial prediction. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, Fixed Rank Kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $\\mathrm{CO}_{2}$ data from NASA's AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"9 1","pages":"100-131"},"PeriodicalIF":11.0000,"publicationDate":"2014-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-SS115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 55

Abstract

In this article, we review and compare a number of methods of spatial prediction. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, Fixed Rank Kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $\mathrm{CO}_{2}$ data from NASA's AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data.
当数据集可能非常大时,空间预测因子的比较
在本文中,我们回顾和比较了一些空间预测的方法。为了展示可用选择的广度,我们考虑了传统的和最近引入的空间预测因子。具体来说,在我们的阐述中,我们回顾了:传统的平稳克里格,平滑样条,负指数距离加权,固定秩克里格,修正预测过程,随机偏微分方程方法和晶格克里格。这种比较旨在为希望在空间预测器之间做出决定的从业者提供服务。因此,我们为不熟悉的人提供技术材料,其中包括每个(确定性和随机)空间预测器的定义和动机。我们使用来自NASA AIRS仪器的$\ mathm {CO}_{2}$数据的基准数据集来解决包括CPU时间和内存使用在内的计算效率问题。此外,使用AIRS数据的保留子集对每个空间预测器的预测性能进行了经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信