Decouple-Couple Network for Drug-Resistant EGFR Mutation Subtype Prediction with Lung Cancer CT Images

Yongbei Zhu, Liusu Wang, He Yu, Meili Liu, Mingyu Zhang, Wei-min Li, Shuo Wang, Jie Tian
{"title":"Decouple-Couple Network for Drug-Resistant EGFR Mutation Subtype Prediction with Lung Cancer CT Images","authors":"Yongbei Zhu, Liusu Wang, He Yu, Meili Liu, Mingyu Zhang, Wei-min Li, Shuo Wang, Jie Tian","doi":"10.1109/ISBI52829.2022.9761599","DOIUrl":null,"url":null,"abstract":"Epidermal growth factor receptor (EGFR)-targeted therapy has revolutionized the treatment of EGFR-mutant lung cancer. However, a part of patients (nearly 10%) with mutated EGFR harbor drug-resistant mutation (DRM) subtypes. Although computed tomography images and deep learning have shown promising results in non-invasively predicting EGFR genotype, which may not be suitable to identify the DRM subtypes due to the imbalanced data distribution and the intra-class diversity of majority class. Hence, we propose a novel decouple-couple network (DCNet) to identify the DRM subtypes. Our DCNet firstly decouples the features of majority class as multiple prototypes, and then couple the prototypes of each class as one prototype for further classification. Meanwhile, the decouple-couple procedure is optimized jointly based on updated similarity score and prototypical contrastive learning. Furthermore, we collect a large CT dataset including 1232 EGFR-mutant lung cancer patients and the DCNet achieved sensitivity over 0.6, which improves largely than the state-of-the-art methods.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidermal growth factor receptor (EGFR)-targeted therapy has revolutionized the treatment of EGFR-mutant lung cancer. However, a part of patients (nearly 10%) with mutated EGFR harbor drug-resistant mutation (DRM) subtypes. Although computed tomography images and deep learning have shown promising results in non-invasively predicting EGFR genotype, which may not be suitable to identify the DRM subtypes due to the imbalanced data distribution and the intra-class diversity of majority class. Hence, we propose a novel decouple-couple network (DCNet) to identify the DRM subtypes. Our DCNet firstly decouples the features of majority class as multiple prototypes, and then couple the prototypes of each class as one prototype for further classification. Meanwhile, the decouple-couple procedure is optimized jointly based on updated similarity score and prototypical contrastive learning. Furthermore, we collect a large CT dataset including 1232 EGFR-mutant lung cancer patients and the DCNet achieved sensitivity over 0.6, which improves largely than the state-of-the-art methods.
解耦耦网络用于肺癌CT图像耐药EGFR突变亚型预测
表皮生长因子受体(EGFR)靶向治疗已经彻底改变了EGFR突变型肺癌的治疗。然而,部分(近10%)EGFR突变患者存在耐药突变(DRM)亚型。尽管计算机断层扫描图像和深度学习在无创预测EGFR基因型方面显示出良好的结果,但由于数据分布不平衡以及大多数类别的类内多样性,可能不适合识别DRM亚型。因此,我们提出了一种新的解耦网络(DCNet)来识别DRM亚型。我们的DCNet首先将大多数类的特征解耦为多个原型,然后将每个类的原型耦合为一个原型,以便进一步分类。同时,基于更新的相似度评分和原型对比学习,对解耦过程进行联合优化。此外,我们收集了包括1232名egfr突变肺癌患者在内的大型CT数据集,DCNet的灵敏度超过0.6,比最先进的方法有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信