{"title":"Features of the Flow Structure in the Boundary Layer on the Flying Wing Model","authors":"A. Pavlenko, B. Zanin, N. S. Alpatskiy, E. Melnik","doi":"10.25205/2541-9447-2022-17-4-72-86","DOIUrl":null,"url":null,"abstract":"In a subsonic wind tunnel, the effect of slip and attack angles on the separation structure of the flow around the model of a trapezoidal flying wing was experimentally studied. In the course of this fundamental study, visualization patterns of a near-wall flow on the leeward side of the wing were obtained at the angles of attack of 0 and 18 degrees and oncoming flow velocity of 25 m/s. It was shown for the first time that gradual increase in slip angle of the wing leads to the restructuring of the flow, up to the disappearance of the local or global separation region on one of the consoles of the model. At the same time, on the second console, the separation is maintained. An increase in the angle of attack of the swept wing led to the development of a separation region: from a locally separated bubble to separation from the leading edge with a reverse flow and the formation of a pair of large-scale vortices. For the first time, singular points on the surface of the model for each mode have been found; by setting cone-shaped perturbation sources in these points one can achieve a significant improvement in the flow around the wing.","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"14 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/2541-9447-2022-17-4-72-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a subsonic wind tunnel, the effect of slip and attack angles on the separation structure of the flow around the model of a trapezoidal flying wing was experimentally studied. In the course of this fundamental study, visualization patterns of a near-wall flow on the leeward side of the wing were obtained at the angles of attack of 0 and 18 degrees and oncoming flow velocity of 25 m/s. It was shown for the first time that gradual increase in slip angle of the wing leads to the restructuring of the flow, up to the disappearance of the local or global separation region on one of the consoles of the model. At the same time, on the second console, the separation is maintained. An increase in the angle of attack of the swept wing led to the development of a separation region: from a locally separated bubble to separation from the leading edge with a reverse flow and the formation of a pair of large-scale vortices. For the first time, singular points on the surface of the model for each mode have been found; by setting cone-shaped perturbation sources in these points one can achieve a significant improvement in the flow around the wing.