Computing L-polynomials of Picard curves from Cartier-Manin matrices

Sualeh Asif, Francesc Fit'e, Dylan Pentland, Andrew V. Sutherland
{"title":"Computing L-polynomials of Picard curves from Cartier-Manin matrices","authors":"Sualeh Asif, Francesc Fit'e, Dylan Pentland, Andrew V. Sutherland","doi":"10.1090/mcom/3675","DOIUrl":null,"url":null,"abstract":"We study the sequence of zeta functions $Z(C_p,T)$ of a generic Picard curve $C:y^3=f(x)$ defined over $\\mathbb{Q}$ at primes $p$ of good reduction for $C$. By determining the density of the set of primes of ordinary reduction, we prove that, for all but a density zero subset of primes, the Zeta function $Z(C_p,T)$ is uniquely determined by the Cartier--Manin matrix $A_p$ of $C$ modulo $p$, the irreducibility of $f$ modulo $p$ (or the failure thereof), and the exponent of the Jacobian of $C$ modulo $p$; we also show that for primes $\\equiv 1 \\pmod{3}$ the matrix $A_p$ suffices and that for primes $\\equiv 2 \\pmod{3}$ the genericity assumption on $C$ is unnecessary. By combining this with recent work of Sutherland, we obtain a practical probabilistic algorithm of Las Vegas type that computes $Z(C_p,T)$ for almost all primes $p \\le N$ using $N\\log(N)^{3+o(1)}$ expected bit operations. This is the first practical result of this type for curves of genus greater than 2.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"10 1","pages":"943-971"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the sequence of zeta functions $Z(C_p,T)$ of a generic Picard curve $C:y^3=f(x)$ defined over $\mathbb{Q}$ at primes $p$ of good reduction for $C$. By determining the density of the set of primes of ordinary reduction, we prove that, for all but a density zero subset of primes, the Zeta function $Z(C_p,T)$ is uniquely determined by the Cartier--Manin matrix $A_p$ of $C$ modulo $p$, the irreducibility of $f$ modulo $p$ (or the failure thereof), and the exponent of the Jacobian of $C$ modulo $p$; we also show that for primes $\equiv 1 \pmod{3}$ the matrix $A_p$ suffices and that for primes $\equiv 2 \pmod{3}$ the genericity assumption on $C$ is unnecessary. By combining this with recent work of Sutherland, we obtain a practical probabilistic algorithm of Las Vegas type that computes $Z(C_p,T)$ for almost all primes $p \le N$ using $N\log(N)^{3+o(1)}$ expected bit operations. This is the first practical result of this type for curves of genus greater than 2.
从Cartier-Manin矩阵计算Picard曲线的l -多项式
我们研究了一类广义Picard曲线$C:y^3=f(x)$的zeta函数$Z(C_p,T)$序列,该曲线在$\mathbb{Q}$上定义在质数$p$上,对$C$有很好的约简。通过确定普通约简素数集合的密度,证明了除了密度为零的素数子集外,Zeta函数$Z(C_p,T)$是由$C$模$p$的Cartier—Manin矩阵$A_p$、$f$模$p$的不可约性(或其失效)和$C$模$p$的雅可比矩阵指数唯一决定的;我们还证明,对于质数$\equiv 1 \pmod{3}$,矩阵$A_p$是足够的,对于质数$\equiv 2 \pmod{3}$,在$C$上的一般性假设是不必要的。通过将此与Sutherland最近的工作相结合,我们获得了一个实用的拉斯维加斯类型的概率算法,该算法使用$N\log(N)^{3+o(1)}$期望位操作来计算几乎所有质数$p \le N$的$Z(C_p,T)$。这是该类型对大于2的曲线的第一个实际结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信