Second sound with ultracold atoms: a brief review

Hui Hu, Xing-Can Yao, Xia-Ji Liu
{"title":"Second sound with ultracold atoms: a brief review","authors":"Hui Hu,&nbsp;Xing-Can Yao,&nbsp;Xia-Ji Liu","doi":"10.1007/s43673-022-00055-2","DOIUrl":null,"url":null,"abstract":"<div><p>We briefly review the research on second sound in ultracold atomic physics, with emphasis on strongly interacting unitary Fermi gases with infinitely large <i>s</i>-wave scattering length. Second sound is a smoking-gun feature of superfluidity in any quantum superfluids. The observation and characterization of second sound in ultracold quantum gases have been a long-standing challenge, and in recent years, there are rapid developments due to the experimental realization of a uniform box-trap potential. The purpose of this review is to present a brief historical account of the key research activities on second sound over the past two decades. We summarize the initial theoretical works that reveal the characteristics of second sound in a unitary Fermi gas, and introduce its first observation in a highly elongated harmonic trap. We then discuss the most recent measurement on second sound attenuation in a uniform setup, which may open a new era to understand quantum transport near quantum criticality in the strongly interacting regime. The observation of second sound in homogeneous weakly interacting Bose condensates in both two and three dimensions are also briefly introduced.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-022-00055-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-022-00055-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We briefly review the research on second sound in ultracold atomic physics, with emphasis on strongly interacting unitary Fermi gases with infinitely large s-wave scattering length. Second sound is a smoking-gun feature of superfluidity in any quantum superfluids. The observation and characterization of second sound in ultracold quantum gases have been a long-standing challenge, and in recent years, there are rapid developments due to the experimental realization of a uniform box-trap potential. The purpose of this review is to present a brief historical account of the key research activities on second sound over the past two decades. We summarize the initial theoretical works that reveal the characteristics of second sound in a unitary Fermi gas, and introduce its first observation in a highly elongated harmonic trap. We then discuss the most recent measurement on second sound attenuation in a uniform setup, which may open a new era to understand quantum transport near quantum criticality in the strongly interacting regime. The observation of second sound in homogeneous weakly interacting Bose condensates in both two and three dimensions are also briefly introduced.

超冷原子的第二声:简要回顾
我们简要回顾了超冷原子物理中有关第二声的研究,重点是具有无限大s波散射长度的强相互作用单元费米气体。秒声是任何量子超流体中超流性的一个烟枪特征。观测和描述超冷量子气体中的第二声是一个长期存在的挑战,近年来,由于实验上实现了均匀箱阱势,第二声的观测和表征有了飞速的发展。本综述旨在简要介绍过去二十年来有关第二声的主要研究活动。我们总结了揭示单位费米气体中秒声特性的最初理论工作,并介绍了在高度拉长的谐波陷阱中首次观测到的秒声。然后,我们讨论了在均匀设置中对第二声衰减的最新测量,这可能为理解强相互作用体系中量子临界附近的量子输运开辟了新纪元。此外,我们还简要介绍了在二维和三维均匀弱相互作用玻色凝聚态中观测到的第二声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信