Endemic-epidemic framework used in covid-19 modelling (Discussion on the paper by nunes, caetano, antunes and dias)

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
M. Dunbar, L. Held
{"title":"Endemic-epidemic framework used in covid-19 modelling (Discussion on the paper by nunes, caetano, antunes and dias)","authors":"M. Dunbar, L. Held","doi":"10.5167/UZH-198715","DOIUrl":null,"url":null,"abstract":"Nunes et al ([54]) provide an overview of mathematical models used to analyse epidemics and techniques for conducting studies to obtain parameter estimates for such models They discuss the SEIR model which has been used in much coronavirus disease 2019 (COVID-19) analysis Our discussion presents a modelling framework based in time series analysis developed for the analysis of infectious disease surveillance data, as well as our use of the framework in analysing COVID-19 We believe many of the purposes of modelling infectious disease outlined by Nunes et al ([54]) as well as the benefits of mathematical modelling highlighted can also be found in the statistical modelling techniques we use in our work © 2020, National Statistical Institute All rights reserved","PeriodicalId":54459,"journal":{"name":"Revstat-Statistical Journal","volume":"61 1","pages":"565-574"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revstat-Statistical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5167/UZH-198715","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

Nunes et al ([54]) provide an overview of mathematical models used to analyse epidemics and techniques for conducting studies to obtain parameter estimates for such models They discuss the SEIR model which has been used in much coronavirus disease 2019 (COVID-19) analysis Our discussion presents a modelling framework based in time series analysis developed for the analysis of infectious disease surveillance data, as well as our use of the framework in analysing COVID-19 We believe many of the purposes of modelling infectious disease outlined by Nunes et al ([54]) as well as the benefits of mathematical modelling highlighted can also be found in the statistical modelling techniques we use in our work © 2020, National Statistical Institute All rights reserved
covid-19建模中使用的地方性流行病框架(由nunes, caetano, antunes和dias对论文进行讨论)
Nunes等人([54])概述了用于分析流行病的数学模型以及开展研究以获得此类模型参数估计的技术。他们讨论了已用于2019冠状病毒病(COVID-19)分析的SEIR模型。我们的讨论提出了一个基于时间序列分析的建模框架,该框架用于分析传染病监测数据。我们认为,Nunes等人([54])概述的传染病建模的许多目的以及强调的数学建模的好处也可以在我们工作中使用的统计建模技术中找到©2020,国家统计研究所保留所有权利
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revstat-Statistical Journal
Revstat-Statistical Journal STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
11.10%
发文量
1
审稿时长
>12 weeks
期刊介绍: The aim of REVSTAT Statistical Journal is to publish articles of high scientific content, developing Statistical Science focused on innovative theory, methods and applications in different areas of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信