{"title":"Some speculations about local thermalization of nonequilibrium extended quantum systems","authors":"Máximo Coppola, D. Karevski","doi":"10.5488/CMP.26.13502","DOIUrl":null,"url":null,"abstract":"We discuss the possibility of defining an emergent local temperature in extended quantum many-body systems evolving out of equilibrium. For the most simple case of free-fermionic systems, we give an explicit formula for the effective temperature in the case of, not necessarily unitary, Gaussian preserving dynamics. In this framework, we consider the hopping fermions on a one-dimensional lattice submitted to randomly distributed projective measurements of the local occupation numbers. We show from the average over many quantum trajectories that the effective temperature relaxes exponentially towards infinity.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.13502","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1
Abstract
We discuss the possibility of defining an emergent local temperature in extended quantum many-body systems evolving out of equilibrium. For the most simple case of free-fermionic systems, we give an explicit formula for the effective temperature in the case of, not necessarily unitary, Gaussian preserving dynamics. In this framework, we consider the hopping fermions on a one-dimensional lattice submitted to randomly distributed projective measurements of the local occupation numbers. We show from the average over many quantum trajectories that the effective temperature relaxes exponentially towards infinity.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.