{"title":"Random matrices associated to Young diagrams","authors":"F. D. Cunden, M. Ligabò, Tommaso Monni","doi":"10.1142/s2010326323500090","DOIUrl":null,"url":null,"abstract":"We consider the singular values of certain Young diagram shaped random matrices. For block-shaped random matrices, the empirical distribution of the squares of the singular eigenvalues converges almost surely to a distribution whose moments are a generalisation of the Catalan numbers. The limiting distribution is the density of a product of rescaled independent Beta random variables and its Stieltjes-Cauchy transform has a hypergeometric representation. In special cases we recover the Marchenko-Pastur and Dykema-Haagerup measures of square and triangular random matrices, respectively. We find a further factorisation of the moments in terms of two complex-valued random variables that generalises the factorisation of the Marcenko-Pastur law as product of independent uniform and arcsine random variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the singular values of certain Young diagram shaped random matrices. For block-shaped random matrices, the empirical distribution of the squares of the singular eigenvalues converges almost surely to a distribution whose moments are a generalisation of the Catalan numbers. The limiting distribution is the density of a product of rescaled independent Beta random variables and its Stieltjes-Cauchy transform has a hypergeometric representation. In special cases we recover the Marchenko-Pastur and Dykema-Haagerup measures of square and triangular random matrices, respectively. We find a further factorisation of the moments in terms of two complex-valued random variables that generalises the factorisation of the Marcenko-Pastur law as product of independent uniform and arcsine random variables.