Random matrices associated to Young diagrams

Pub Date : 2023-01-31 DOI:10.1142/s2010326323500090
F. D. Cunden, M. Ligabò, Tommaso Monni
{"title":"Random matrices associated to Young diagrams","authors":"F. D. Cunden, M. Ligabò, Tommaso Monni","doi":"10.1142/s2010326323500090","DOIUrl":null,"url":null,"abstract":"We consider the singular values of certain Young diagram shaped random matrices. For block-shaped random matrices, the empirical distribution of the squares of the singular eigenvalues converges almost surely to a distribution whose moments are a generalisation of the Catalan numbers. The limiting distribution is the density of a product of rescaled independent Beta random variables and its Stieltjes-Cauchy transform has a hypergeometric representation. In special cases we recover the Marchenko-Pastur and Dykema-Haagerup measures of square and triangular random matrices, respectively. We find a further factorisation of the moments in terms of two complex-valued random variables that generalises the factorisation of the Marcenko-Pastur law as product of independent uniform and arcsine random variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the singular values of certain Young diagram shaped random matrices. For block-shaped random matrices, the empirical distribution of the squares of the singular eigenvalues converges almost surely to a distribution whose moments are a generalisation of the Catalan numbers. The limiting distribution is the density of a product of rescaled independent Beta random variables and its Stieltjes-Cauchy transform has a hypergeometric representation. In special cases we recover the Marchenko-Pastur and Dykema-Haagerup measures of square and triangular random matrices, respectively. We find a further factorisation of the moments in terms of two complex-valued random variables that generalises the factorisation of the Marcenko-Pastur law as product of independent uniform and arcsine random variables.
分享
查看原文
与杨氏图相关的随机矩阵
研究了一类杨氏图形随机矩阵的奇异值。对于块状随机矩阵,奇异特征值的平方的经验分布几乎肯定地收敛到一个矩是加泰罗尼亚数的一般化的分布。极限分布是重新标度的独立Beta随机变量乘积的密度,其stieltje - cauchy变换具有超几何表示。在特殊情况下,我们分别恢复了方形和三角形随机矩阵的Marchenko-Pastur测度和Dykema-Haagerup测度。我们发现了两个复值随机变量的矩的进一步分解,它将Marcenko-Pastur定律的分解推广为独立的均匀随机变量和反正弦随机变量的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信