Classification of Schizophrenia versus normal subjects using deep learning

Pinkal Patel, P. Aggarwal, Anubha Gupta
{"title":"Classification of Schizophrenia versus normal subjects using deep learning","authors":"Pinkal Patel, P. Aggarwal, Anubha Gupta","doi":"10.1145/3009977.3010050","DOIUrl":null,"url":null,"abstract":"Motivated by deep learning approaches to classify normal and neuro-diseased subjects in functional Magnetic Resonance Imaging (fMRI), we propose stacked autoencoder (SAE) based 2-stage architecture for disease diagnosis. In the proposed architecture, a separate 4-hidden layer autoencoder is trained in unsupervised manner for feature extraction corresponding to every brain region. Thereafter, these trained autoencoders are used to provide features on class-labeled input data for training a binary support vector machine (SVM) based classifier. In order to design a robust classifier, noisy or inactive gray matter voxels are filtered out using a proposed covariance based approach. We applied the proposed methodology on a public dataset, namely, 1000 Functional Connectomes Project Cobre dataset consisting of fMRI data of normal and Schizophrenia subjects. The proposed architecture is able to classify normal and Schizophrenia subjects with 10-fold cross-validation accuracy of 92% that is better compared to the existing methods used on the same dataset.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"3 1","pages":"28:1-28:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Motivated by deep learning approaches to classify normal and neuro-diseased subjects in functional Magnetic Resonance Imaging (fMRI), we propose stacked autoencoder (SAE) based 2-stage architecture for disease diagnosis. In the proposed architecture, a separate 4-hidden layer autoencoder is trained in unsupervised manner for feature extraction corresponding to every brain region. Thereafter, these trained autoencoders are used to provide features on class-labeled input data for training a binary support vector machine (SVM) based classifier. In order to design a robust classifier, noisy or inactive gray matter voxels are filtered out using a proposed covariance based approach. We applied the proposed methodology on a public dataset, namely, 1000 Functional Connectomes Project Cobre dataset consisting of fMRI data of normal and Schizophrenia subjects. The proposed architecture is able to classify normal and Schizophrenia subjects with 10-fold cross-validation accuracy of 92% that is better compared to the existing methods used on the same dataset.
利用深度学习对精神分裂症和正常受试者进行分类
受功能磁共振成像(fMRI)中对正常和神经病变受试者进行分类的深度学习方法的启发,我们提出了基于堆叠自编码器(SAE)的两阶段疾病诊断架构。在所提出的架构中,以无监督的方式训练一个独立的4隐藏层自编码器,用于提取对应于每个大脑区域的特征。然后,这些训练好的自编码器被用来为分类标记的输入数据提供特征,用于训练基于二进制支持向量机(SVM)的分类器。为了设计一个鲁棒分类器,使用一种基于协方差的方法过滤掉有噪声或不活动的灰质体素。我们将提出的方法应用于一个公共数据集,即1000个功能性连接体项目Cobre数据集,该数据集由正常和精神分裂症受试者的功能磁共振成像数据组成。所提出的架构能够以92%的10倍交叉验证准确率对正常和精神分裂症受试者进行分类,这比在相同数据集上使用的现有方法要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信