{"title":"Convex Functions in ACL2(r)","authors":"Carl Kwan, M. Greenstreet","doi":"10.4204/EPTCS.280.10","DOIUrl":null,"url":null,"abstract":"This paper builds upon our prior formalisation of R^n in ACL2(r) by presenting a set of theorems for reasoning about convex functions. This is a demonstration of the higher-dimensional analytical reasoning possible in our metric space formalisation of R^n. Among the introduced theorems is a set of equivalent conditions for convex functions with Lipschitz continuous gradients from Yurii Nesterov's classic text on convex optimisation. To the best of our knowledge a full proof of the theorem has yet to be published in a single piece of literature. We also explore \"proof engineering\" issues, such as how to state Nesterov's theorem in a manner that is both clear and useful.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"2 1","pages":"128-142"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.280.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper builds upon our prior formalisation of R^n in ACL2(r) by presenting a set of theorems for reasoning about convex functions. This is a demonstration of the higher-dimensional analytical reasoning possible in our metric space formalisation of R^n. Among the introduced theorems is a set of equivalent conditions for convex functions with Lipschitz continuous gradients from Yurii Nesterov's classic text on convex optimisation. To the best of our knowledge a full proof of the theorem has yet to be published in a single piece of literature. We also explore "proof engineering" issues, such as how to state Nesterov's theorem in a manner that is both clear and useful.