M. Hussein, R. El-Shishtawy, A. Obaid, M. Abdel Salam
{"title":"Influence of Single-Walled Carbon Nanotubes on the Performance of Poly(Azomethine-Ether) Composite Materials","authors":"M. Hussein, R. El-Shishtawy, A. Obaid, M. Abdel Salam","doi":"10.1080/03602559.2017.1373399","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work is aimed to fabricate a new set of composite materials containing conducting poly(azomethine-ether) reinforced with single-walled carbon nanotubes in the form of single-walled carbon nanotube/poly(azomethine-ether)1–5 for excellent enhanced thermal as well as conducting behavior of poly(azomethine-ether). Single-walled carbon nanotubes of variable loading have been embedded into conducting poly(azomethine-ether) using in situ polymerization technique. Before attempting the polymerization, 1,3-thiazole established poly(azomethine-ether) and its conformable monomers have been prepared and their chemical structures have been correlated by spectral analyses. Furthermore, ηinh and Mw values for poly(azomethine-ether) were found 0.89 dL g−1 and 39723.6, respectively. The fabricated single-walled carbon nanotube/poly(azomethine-ether)1–5 composites were specified and characterized by wide-angle X-ray diffraction patterns, Fourier transform infrared spectroscopy, thermal behavior, scanning electron microscopy, and transmission electron microscopy characterization techniques. A perfect indicative response for this composite material was estimated by Fourier transform infrared spectra and X-ray diffraction as well. Both techniques displayed all intensive characteristic peaks regarding single-walled carbon nanotubes and poly(azomethine-ether) in the spectra or diffraction pattern for single-walled carbon nanotube/poly(azomethine-ether)1–5. The role of single-walled carbon nanotubes on the performance of poly(azomethine-ether) was considerably examined. Single-walled carbon nanotube/poly(azomethine-ether)1–5 showed relatively higher thermal stability. Single-walled carbon nanotube/poly(azomethine-ether)1 displayed the lowest final composite degradation temperature value (552°C), whereas single-walled carbon nanotube/poly(azomethine-ether)5 displayed the highest value (621°C). T10 and T25 values showed a gradual temperature increased while single-walled carbon nanotubes increased. Single-walled carbon nanotube/poly(azomethine-ether)1 showed the lowest thermal stability and single-walled carbon nanotube/poly(azomethine-ether)5 showed the highest thermal stability between all fabricated products. Furthermore, transmission electron microscopy images showed a prominent increase in single-walled carbon nanotubes diameters (40–60 nm). The conductivity values were significantly increased while single-walled carbon nanotubes content was increased and reached to the semiconductors. ε′ values were also increased in both single-walled carbon nanotube/poly(azomethine-ether)4,5 which have higher single-walled carbon nanotubes content. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"8 1","pages":"1150 - 1163"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1373399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11
Abstract
ABSTRACT The present work is aimed to fabricate a new set of composite materials containing conducting poly(azomethine-ether) reinforced with single-walled carbon nanotubes in the form of single-walled carbon nanotube/poly(azomethine-ether)1–5 for excellent enhanced thermal as well as conducting behavior of poly(azomethine-ether). Single-walled carbon nanotubes of variable loading have been embedded into conducting poly(azomethine-ether) using in situ polymerization technique. Before attempting the polymerization, 1,3-thiazole established poly(azomethine-ether) and its conformable monomers have been prepared and their chemical structures have been correlated by spectral analyses. Furthermore, ηinh and Mw values for poly(azomethine-ether) were found 0.89 dL g−1 and 39723.6, respectively. The fabricated single-walled carbon nanotube/poly(azomethine-ether)1–5 composites were specified and characterized by wide-angle X-ray diffraction patterns, Fourier transform infrared spectroscopy, thermal behavior, scanning electron microscopy, and transmission electron microscopy characterization techniques. A perfect indicative response for this composite material was estimated by Fourier transform infrared spectra and X-ray diffraction as well. Both techniques displayed all intensive characteristic peaks regarding single-walled carbon nanotubes and poly(azomethine-ether) in the spectra or diffraction pattern for single-walled carbon nanotube/poly(azomethine-ether)1–5. The role of single-walled carbon nanotubes on the performance of poly(azomethine-ether) was considerably examined. Single-walled carbon nanotube/poly(azomethine-ether)1–5 showed relatively higher thermal stability. Single-walled carbon nanotube/poly(azomethine-ether)1 displayed the lowest final composite degradation temperature value (552°C), whereas single-walled carbon nanotube/poly(azomethine-ether)5 displayed the highest value (621°C). T10 and T25 values showed a gradual temperature increased while single-walled carbon nanotubes increased. Single-walled carbon nanotube/poly(azomethine-ether)1 showed the lowest thermal stability and single-walled carbon nanotube/poly(azomethine-ether)5 showed the highest thermal stability between all fabricated products. Furthermore, transmission electron microscopy images showed a prominent increase in single-walled carbon nanotubes diameters (40–60 nm). The conductivity values were significantly increased while single-walled carbon nanotubes content was increased and reached to the semiconductors. ε′ values were also increased in both single-walled carbon nanotube/poly(azomethine-ether)4,5 which have higher single-walled carbon nanotubes content. GRAPHICAL ABSTRACT