INDONESIAN-TRANSLATED HADITH CONTENT WEIGHTING IN PSEUDO-RELEVANCE FEEDBACK QUERY EXPANSION

Ivanda Zevi Amalia, Akbar Noto Ponco Bimantoro, A. Arifin, Maryamah Faisol, R. Indraswari, Riska Wakhidatus Sholikah
{"title":"INDONESIAN-TRANSLATED HADITH CONTENT WEIGHTING IN PSEUDO-RELEVANCE FEEDBACK QUERY EXPANSION","authors":"Ivanda Zevi Amalia, Akbar Noto Ponco Bimantoro, A. Arifin, Maryamah Faisol, R. Indraswari, Riska Wakhidatus Sholikah","doi":"10.21107/kursor.v11i1.249","DOIUrl":null,"url":null,"abstract":"In general, hadith consists of isnad and matan (content). Matan can be separated into several components for example a story, main content, and some additional information. Other texts besides main content, such as isnad and story can interfere the retrieval process of relevant documents because most users typically use simple queries. Thus, in this paper, we proposed a Named Entity Recognition (NER) component weighting model in improving the Indonesian hadith retrieval system. We did 3 test scenarios, the first scenario (S1) did not separate the hadith into several components, the second scenario (S2) separated the hadith into 2 components, isnad and matan, and the third scenario separated the hadith into 4 components, isnad, background story, content, and additional information. From the experimental results, it is found that the TF-IDF with rocchio algorithm in query expansion outperforms DocVec. Also, separation and weighting of the hadith components affect the retrieval performance because isnad can be considered as noise in a query. Separation of 2 separate components had the best overall results in general although 4 separate components showed better results in some cases with precision up to 100% and 70% recall.","PeriodicalId":52605,"journal":{"name":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/kursor.v11i1.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In general, hadith consists of isnad and matan (content). Matan can be separated into several components for example a story, main content, and some additional information. Other texts besides main content, such as isnad and story can interfere the retrieval process of relevant documents because most users typically use simple queries. Thus, in this paper, we proposed a Named Entity Recognition (NER) component weighting model in improving the Indonesian hadith retrieval system. We did 3 test scenarios, the first scenario (S1) did not separate the hadith into several components, the second scenario (S2) separated the hadith into 2 components, isnad and matan, and the third scenario separated the hadith into 4 components, isnad, background story, content, and additional information. From the experimental results, it is found that the TF-IDF with rocchio algorithm in query expansion outperforms DocVec. Also, separation and weighting of the hadith components affect the retrieval performance because isnad can be considered as noise in a query. Separation of 2 separate components had the best overall results in general although 4 separate components showed better results in some cases with precision up to 100% and 70% recall.
伪关联反馈查询扩展中印尼语翻译的圣训内容权重
一般来说,圣训由isnad和matan(内容)组成。Matan可以分成几个部分,例如故事、主要内容和一些附加信息。除了主要内容之外的其他文本,如isnad和story,可能会干扰相关文档的检索过程,因为大多数用户通常使用简单的查询。为此,本文提出了一种命名实体识别(NER)分量加权模型,用于改进印尼语圣训检索系统。我们做了3个测试场景,第一个场景(S1)没有将圣训分成几个部分,第二个场景(S2)将圣训分成2个部分,isnad和matan,第三个场景将圣训分成4个部分,isnad,背景故事,内容和附加信息。实验结果表明,采用rocchio算法的TF-IDF在查询扩展方面优于DocVec。此外,hadith组件的分离和加权也会影响检索性能,因为isnad可以被视为查询中的噪声。2个独立成分的分离总体上有最好的结果,尽管4个独立成分在某些情况下显示更好的结果,精度高达100%和70%召回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信