On Particle Methods for Parameter Estimation in State-Space Models

N. Kantas, A. Doucet, Sumeetpal S. Singh, J. Maciejowski, N. Chopin
{"title":"On Particle Methods for Parameter Estimation in State-Space Models","authors":"N. Kantas, A. Doucet, Sumeetpal S. Singh, J. Maciejowski, N. Chopin","doi":"10.1214/14-STS511","DOIUrl":null,"url":null,"abstract":"Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"387","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/14-STS511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 387

Abstract

Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.
状态空间模型参数估计的粒子方法
非线性非高斯状态空间模型在统计学、计量经济学、信息工程和信号处理中无处不在。粒子方法,也称为顺序蒙特卡罗(SMC)方法,为相关的状态推理问题提供了可靠的数值近似。然而,在大多数应用程序中,感兴趣的状态空间模型还依赖于需要从数据中估计的未知静态参数。在这种情况下,标准粒子方法失效,有必要依赖更复杂的算法。本文的目的是对粒子方法进行全面的回顾,这些方法已被提议在状态空间模型中执行静态参数估计。我们讨论了这些方法的优点和局限性,并举例说明了它们在简单模型上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信