Convolutional Neural Networks for Automatic Threat Detection in Security X-Ray Images

Trevor Morris, Tiffany Chien, Eric L. Goodman
{"title":"Convolutional Neural Networks for Automatic Threat Detection in Security X-Ray Images","authors":"Trevor Morris, Tiffany Chien, Eric L. Goodman","doi":"10.1109/ICMLA.2018.00049","DOIUrl":null,"url":null,"abstract":"In this paper we apply Convolutional Neural Networks (CNNs) to the task of automatic threat detection, specifically conventional explosives, in security X-ray scans of passenger baggage. We present the first results of utilizing CNNs for explosives detection, and introduce a dataset, the Passenger Baggage Object Database (PBOD), which can be used by researchers to develop new threat detection algorithms. Using state-of-the-art CNN models and taking advantage of the properties of the Xray scanner, we achieve reliable detection of threats, with the best model achieving an AUC of the ROC of 0.95. We also explore heatmaps as a visualization of the location of the threat.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"8 1","pages":"285-292"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we apply Convolutional Neural Networks (CNNs) to the task of automatic threat detection, specifically conventional explosives, in security X-ray scans of passenger baggage. We present the first results of utilizing CNNs for explosives detection, and introduce a dataset, the Passenger Baggage Object Database (PBOD), which can be used by researchers to develop new threat detection algorithms. Using state-of-the-art CNN models and taking advantage of the properties of the Xray scanner, we achieve reliable detection of threats, with the best model achieving an AUC of the ROC of 0.95. We also explore heatmaps as a visualization of the location of the threat.
基于卷积神经网络的安全x射线图像威胁自动检测
在本文中,我们将卷积神经网络(cnn)应用于旅客行李安全x射线扫描中的自动威胁检测任务,特别是常规爆炸物。我们提出了利用cnn进行爆炸物检测的第一个结果,并介绍了一个数据集,乘客行李对象数据库(PBOD),研究人员可以使用它来开发新的威胁检测算法。使用最先进的CNN模型并利用x射线扫描仪的特性,我们实现了对威胁的可靠检测,最佳模型的ROC AUC为0.95。我们还探索了热图作为威胁位置的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信