Generalized lattices over one-dimensional noetherian domains

Pub Date : 2022-11-01 DOI:10.1216/jca.2022.14.443
P. Př́ıhoda
{"title":"Generalized lattices over one-dimensional noetherian domains","authors":"P. Př́ıhoda","doi":"10.1216/jca.2022.14.443","DOIUrl":null,"url":null,"abstract":"We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.
分享
查看原文
一维诺瑟域上的广义格
研究了一维交换诺瑟域上纯射影无扭模的直接和分解。在可分离代数阶表示理论的启发下,我们研究了当每一个纯射影无扭模是有限生成模的直接和时。给出了解析化局部环和Bass域的满意判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信