J. Barth, D. Plass, Adis Vehabovic, R. Joshi, R. Kanj, S. Burns, T. Weaver
{"title":"Isolated Preset Architecture for a 32nm SOI embedded DRAM macro","authors":"J. Barth, D. Plass, Adis Vehabovic, R. Joshi, R. Kanj, S. Burns, T. Weaver","doi":"10.1109/VLSIC.2012.6243814","DOIUrl":null,"url":null,"abstract":"The Isolated Preset Architecture (IPA) improves retention characteristics by implementing a weak read `1' Isolation scheme, allowing a lower stored `1' level to be sensed. The architecture also reduces sub-array area by 15% and bit-line activation power by 2× compared to previous design, without impacting performance. The architecture was implemented in IBM's 32nm High-K/Metal SOI embedded DRAM technology. Hardware results confirm 1.8ns random cycle and 2× improved retention characteristic with optimized Analog reference tuning.","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"21 1","pages":"110-111"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Isolated Preset Architecture (IPA) improves retention characteristics by implementing a weak read `1' Isolation scheme, allowing a lower stored `1' level to be sensed. The architecture also reduces sub-array area by 15% and bit-line activation power by 2× compared to previous design, without impacting performance. The architecture was implemented in IBM's 32nm High-K/Metal SOI embedded DRAM technology. Hardware results confirm 1.8ns random cycle and 2× improved retention characteristic with optimized Analog reference tuning.