QAnswer: A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users

Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, K. Singh, P. Maret
{"title":"QAnswer: A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users","authors":"Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, K. Singh, P. Maret","doi":"10.1145/3308558.3314124","DOIUrl":null,"url":null,"abstract":"We present QAnswer, a Question Answering system which queries at the same time 3 core datasets of the Semantic Web, that are relevant for end-users. These datasets are Wikidata with Lexemes, LinkedGeodata and Musicbrainz. Additionally, it is possible to query these datasets in English, German, French, Italian, Spanish, Pourtuguese, Arabic and Chinese. Moreover, QAnswer includes a fallback option to the search engine Qwant when the answer to a question cannot be found in the datasets mentioned above. These features make QAnswer as the first prototype of a Question Answering System over a considerable part of the LOD cloud.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We present QAnswer, a Question Answering system which queries at the same time 3 core datasets of the Semantic Web, that are relevant for end-users. These datasets are Wikidata with Lexemes, LinkedGeodata and Musicbrainz. Additionally, it is possible to query these datasets in English, German, French, Italian, Spanish, Pourtuguese, Arabic and Chinese. Moreover, QAnswer includes a fallback option to the search engine Qwant when the answer to a question cannot be found in the datasets mentioned above. These features make QAnswer as the first prototype of a Question Answering System over a considerable part of the LOD cloud.
QAnswer:一个问答原型,弥合了相当一部分LOD云和最终用户之间的差距
我们提出了QAnswer,一个问答系统,同时查询三个核心数据集的语义网,这是与最终用户相关的。这些数据集是维基数据与lexeme, LinkedGeodata和Musicbrainz。此外,还可以用英语、德语、法语、意大利语、西班牙语、葡萄牙语、阿拉伯语和中文查询这些数据集。此外,当在上面提到的数据集中找不到问题的答案时,QAnswer包含了一个搜索引擎Qwant的备用选项。这些特性使QAnswer成为在LOD云的相当一部分上的第一个问答系统原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信