Connected certified domination edge critical and stable graphs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Azham Ilyass Lone, V. Goswami
{"title":"Connected certified domination edge critical and stable graphs","authors":"Azham Ilyass Lone, V. Goswami","doi":"10.2478/ausi-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract In an isolate-free graph 𝒵 = (V𝒵, E𝒵), a set C of vertices is termed as a connected certified dominating set of 𝒵 if, |N𝒵(u) ∩ (V𝒵\\C)| = 0 or |N𝒵(u) ∩ (V𝒵\\C)| ≥ 2 ∀u ∈C, and the subgraph 𝒵[C] induced by C is connected. The cardinality of the minimal connected certified dominating set of graph 𝒵 is called the connected certified domination number of 𝒵 denoted by γcerc (Z). In graph 𝒵, if the deletion of any arbitrary edge changes the connected certified domination number, then we call it a connected certified domination edge critical. If the deletion of any random edge does not a ect the connected certified domination number, then we refer to it as a connected certified domination edge stable graph. In this paper, we investigate those graphs which are connected certified domination edge critical and stable upon edge removal. We then study some properties of connected certified domination edge critical and stable graphs.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"23 1","pages":"25 - 37"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In an isolate-free graph 𝒵 = (V𝒵, E𝒵), a set C of vertices is termed as a connected certified dominating set of 𝒵 if, |N𝒵(u) ∩ (V𝒵\C)| = 0 or |N𝒵(u) ∩ (V𝒵\C)| ≥ 2 ∀u ∈C, and the subgraph 𝒵[C] induced by C is connected. The cardinality of the minimal connected certified dominating set of graph 𝒵 is called the connected certified domination number of 𝒵 denoted by γcerc (Z). In graph 𝒵, if the deletion of any arbitrary edge changes the connected certified domination number, then we call it a connected certified domination edge critical. If the deletion of any random edge does not a ect the connected certified domination number, then we refer to it as a connected certified domination edge stable graph. In this paper, we investigate those graphs which are connected certified domination edge critical and stable upon edge removal. We then study some properties of connected certified domination edge critical and stable graphs.
连通证明支配边临界稳定图
抽象的isolate-free图𝒵= (V𝒵E𝒵),一组连接的顶点称为一个C认证控制套𝒵如果| N𝒵(u)∩(V𝒵\ C) | = 0或| N𝒵(u)∩(V𝒵\ C) |≥2∀u∈C,和子图𝒵[C] C引起的连接。图𝒵的最小连通认证控制集的cardinality称为𝒵的连通认证控制数,用γcerc (Z)表示。在图𝒵中,如果任意边的删除改变了连通认证控制数,则称其为连通认证控制边临界。如果任意一条随机边的删除不影响连通认证统治数,则称其为连通认证统治边稳定图。在本文中,我们研究了那些被证明是连通的控制边在去边后是临界且稳定的图。在此基础上,研究了连通认证控制边临界稳定图的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信