Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification

M. Akhlaghi, E. Salahi, S. A. Tayebifard, G. Schmidt
{"title":"Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification","authors":"M. Akhlaghi, E. Salahi, S. A. Tayebifard, G. Schmidt","doi":"10.53063/synsint.2021.1347","DOIUrl":null,"url":null,"abstract":"Five TiAl–Ti3AlC2 composite samples containing (10, 15, 20, 25 and 30 wt% Ti3AlC2 MAX phase) were prepared by spark plasma sintering technique at 900 °C for 7 min under 40 MPa. For this purpose, metallic titanium and aluminum powders (aiming at the in-situ formation of the TiAl matrix phase) were ball-milled with predetermined contents of Ti3AlC2 MAX phase, which already was synthesized using the same metallic powders as well as graphite flakes. Displacement-time-temperature variations during the heating and sintering steps, displacement rate versus temperature, displacement rate versus time, and densification behavior were studied. Two sharp changes were detected in the diagrams: the first one, ~16 min after the start of the heating process due to the melting of Al, and the second one, after ~35 min because of the sintering progression and the applied final pressure. The highest relative densities were measured for the samples doped with 20 and 25 wt% Ti3AlC2 additives. More Ti3AlC2 addition resulted in decreased relative density because of the agglomeration of MAX phase particles.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2021.1347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Five TiAl–Ti3AlC2 composite samples containing (10, 15, 20, 25 and 30 wt% Ti3AlC2 MAX phase) were prepared by spark plasma sintering technique at 900 °C for 7 min under 40 MPa. For this purpose, metallic titanium and aluminum powders (aiming at the in-situ formation of the TiAl matrix phase) were ball-milled with predetermined contents of Ti3AlC2 MAX phase, which already was synthesized using the same metallic powders as well as graphite flakes. Displacement-time-temperature variations during the heating and sintering steps, displacement rate versus temperature, displacement rate versus time, and densification behavior were studied. Two sharp changes were detected in the diagrams: the first one, ~16 min after the start of the heating process due to the melting of Al, and the second one, after ~35 min because of the sintering progression and the applied final pressure. The highest relative densities were measured for the samples doped with 20 and 25 wt% Ti3AlC2 additives. More Ti3AlC2 addition resulted in decreased relative density because of the agglomeration of MAX phase particles.
Ti3AlC2 MAX相对原位合成TiAl金属间化合物性能的影响第一部分:烧结和致密化
采用火花等离子烧结技术,在900℃、40 MPa、7 min条件下制备了5种Ti3AlC2复合材料样品(Ti3AlC2 MAX相含量分别为10%、15%、20%、25%和30%)。为此,金属钛和铝粉(旨在原位形成TiAl基体相)被预先确定含量的Ti3AlC2 MAX相球磨,而Ti3AlC2 MAX相已经用相同的金属粉末和石墨薄片合成。研究了加热和烧结过程中位移-温度变化、位移速率-温度变化、位移速率-时间变化以及致密化行为。在图中可以检测到两个明显的变化:第一个变化发生在加热过程开始后约16分钟,原因是铝的熔化;第二个变化发生在约35分钟后,原因是烧结过程和施加的最终压力。对于掺有20%和25% Ti3AlC2添加剂的样品,测量了最高的相对密度。Ti3AlC2添加量越大,由于MAX相颗粒的团聚,导致相对密度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信