Correntropy induced metric based common spatial patterns

J. Dong, Badong Chen, N. Lu, Haixian Wang, Nanning Zheng
{"title":"Correntropy induced metric based common spatial patterns","authors":"J. Dong, Badong Chen, N. Lu, Haixian Wang, Nanning Zheng","doi":"10.1109/MLSP.2017.8168132","DOIUrl":null,"url":null,"abstract":"Common spatial patterns (CSP) is a widely used method in the field of electroencephalogram (EEG) signal processing. The goal of CSP is to find spatial filters that maximize the ratio between the variances of two classes. The conventional CSP is however sensitive to outliers because it is based on the L2-norm. Inspired by the correntropy induced metric (CIM), we propose in this work a new algorithm, called CIM based CSP (CSP-CIM), to improve the robustness of CSP with respect to outliers. The CSP-CIM searches the optimal solution by a simple gradient based iterative algorithm. A toy example and a real EEG dataset are used to demonstrate the desirable performance of the new method.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Common spatial patterns (CSP) is a widely used method in the field of electroencephalogram (EEG) signal processing. The goal of CSP is to find spatial filters that maximize the ratio between the variances of two classes. The conventional CSP is however sensitive to outliers because it is based on the L2-norm. Inspired by the correntropy induced metric (CIM), we propose in this work a new algorithm, called CIM based CSP (CSP-CIM), to improve the robustness of CSP with respect to outliers. The CSP-CIM searches the optimal solution by a simple gradient based iterative algorithm. A toy example and a real EEG dataset are used to demonstrate the desirable performance of the new method.
基于共同空间模式的相关熵诱导度量
共同空间模式(CSP)是脑电图(EEG)信号处理领域中应用广泛的一种方法。CSP的目标是找到最大化两个类的方差之比的空间过滤器。然而,传统的CSP对异常值很敏感,因为它是基于l2规范的。受相关熵诱导度量(CIM)的启发,我们提出了一种新的算法,称为基于CIM的CSP (CSP-CIM),以提高CSP对异常值的鲁棒性。CSP-CIM通过一种简单的基于梯度的迭代算法来搜索最优解。通过一个玩具样例和一个真实的脑电数据集来验证新方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信