{"title":"Event recognition in broadcast soccer videos","authors":"Himangi Saraogi, R. Sharma, Vijay Kumar","doi":"10.1145/3009977.3010074","DOIUrl":null,"url":null,"abstract":"Automatic recognition of important events in soccer broadcast videos plays a vital role in many applications including video summarization, indexing, content-based search, and in performance analysis of players and teams. This paper proposes an approach for soccer event recognition using deep convolutional features combined with domain-specific cues. For deep representation, we use the recently proposed trajectory based deep convolutional descriptor (TDD) [1] which samples and pools the discriminatively trained convolutional features around the improved trajectories. We further improve the performance by incorporating domain-specific knowledge based on camera view type and its position. The camera position and view type captures the statistics of occurrence of events in different play-field regions and zoom-level respectively. We conduct extensive experiments on 6 hour long soccer matches and show the effectiveness of deep video representation for soccer and the improvements obtained using domain-specific cues.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"4 1","pages":"14:1-14:7"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Automatic recognition of important events in soccer broadcast videos plays a vital role in many applications including video summarization, indexing, content-based search, and in performance analysis of players and teams. This paper proposes an approach for soccer event recognition using deep convolutional features combined with domain-specific cues. For deep representation, we use the recently proposed trajectory based deep convolutional descriptor (TDD) [1] which samples and pools the discriminatively trained convolutional features around the improved trajectories. We further improve the performance by incorporating domain-specific knowledge based on camera view type and its position. The camera position and view type captures the statistics of occurrence of events in different play-field regions and zoom-level respectively. We conduct extensive experiments on 6 hour long soccer matches and show the effectiveness of deep video representation for soccer and the improvements obtained using domain-specific cues.