Diversity in Mitochondrial Function Explains Differences in Vascular Oxygen Sensing

E. Michelakis, V. Hampl, A. Nsair, Xichen Wu, Gwyneth Harry, A. Haromy, Rachita Gurtu, S. Archer
{"title":"Diversity in Mitochondrial Function Explains Differences in Vascular Oxygen Sensing","authors":"E. Michelakis, V. Hampl, A. Nsair, Xichen Wu, Gwyneth Harry, A. Haromy, Rachita Gurtu, S. Archer","doi":"10.1161/01.RES.0000024689.07590.C2","DOIUrl":null,"url":null,"abstract":"Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"39 1","pages":"1307-1315"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"326","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000024689.07590.C2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 326

Abstract

Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.
线粒体功能的多样性解释了血管氧感知的差异
肾动脉(RAs)在缺氧时扩张,而肺动脉(PAs)收缩。在PA中,O2张力由一种未知的氧化还原传感器检测,该传感器控制K+通道功能,从而控制平滑肌细胞(SMC)膜电位和胞质钙。线粒体是细胞氧化还原状态的重要调节因子,是候选的血管O2传感器。线粒体来源的活性氧(AOS),如H2O2,可以扩散到细胞质中,通过激活肌层K+通道引起血管舒张。我们假设血管床之间的线粒体多样性解释了PAs和RAs对缺氧的相反反应。比较了缺氧和近端电子传递链(pETC)抑制剂(鱼藤酮和抗霉素A)在大鼠离体动脉、血管SMCs和灌注器官中的作用。缺氧和pETC抑制剂降低AOS和外向K+电流的产生,收缩PAs,同时增加AOS的产生和外向K+电流,扩张RAs。在基线时,肺线粒体呼吸频率较低,AOS和H2O2生成率较高。同样,与RA环相比,PA环中AOS和H2O2的产生更多。SMC线粒体膜电位在PAs中比在RAs中去极化更多。这些差异部分与近端ETC成分的低表达和线粒体锰超氧化物歧化酶在PAs与RAs中的高表达有关。线粒体衍生的血管舒张因子(可能是H2O2)的差异调节可以解释缺氧对PAs和RAs的相反作用。我们得出结论,PA和RA具有不同的线粒体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信