Mapping of ImageNet and Wikidata for Knowledge Graphs Enabled Computer Vision

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
D. Filipiak, A. Fensel, A. Filipowska
{"title":"Mapping of ImageNet and Wikidata for Knowledge Graphs Enabled Computer Vision","authors":"D. Filipiak, A. Fensel, A. Filipowska","doi":"10.52825/bis.v1i.65","DOIUrl":null,"url":null,"abstract":"Knowledge graphs are used as a source of prior knowledge in numerous computer vision tasks. However, such an approach requires to have a mapping between ground truth data labels and the target knowledge graph. We linked the ILSVRC 2012 dataset (often simply referred to as ImageNet) labels to Wikidata entities. This enables using rich knowledge graph structure and contextual information for several computer vision tasks, traditionally benchmarked with ImageNet and its variations. For instance, in few-shot learning classification scenarios with neural networks, this mapping can be leveraged for weight initialisation, which can improve the final performance metrics value. We mapped all 1000 ImageNet labels – 461 were already directly linked with the exact match property (P2888), 467 have exact match candidates, and 72 cannot be matched directly. For these 72 labels, we discuss different problem categories stemming from the inability of finding an exact match. Semantically close non-exact match candidates are presented as well. The mapping is publicly available athttps://github.com/DominikFilipiak/imagenet-to-wikidata-mapping.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"28 1","pages":"151-161"},"PeriodicalIF":7.4000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.65","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Knowledge graphs are used as a source of prior knowledge in numerous computer vision tasks. However, such an approach requires to have a mapping between ground truth data labels and the target knowledge graph. We linked the ILSVRC 2012 dataset (often simply referred to as ImageNet) labels to Wikidata entities. This enables using rich knowledge graph structure and contextual information for several computer vision tasks, traditionally benchmarked with ImageNet and its variations. For instance, in few-shot learning classification scenarios with neural networks, this mapping can be leveraged for weight initialisation, which can improve the final performance metrics value. We mapped all 1000 ImageNet labels – 461 were already directly linked with the exact match property (P2888), 467 have exact match candidates, and 72 cannot be matched directly. For these 72 labels, we discuss different problem categories stemming from the inability of finding an exact match. Semantically close non-exact match candidates are presented as well. The mapping is publicly available athttps://github.com/DominikFilipiak/imagenet-to-wikidata-mapping.
面向知识图谱的ImageNet和Wikidata的映射
在许多计算机视觉任务中,知识图被用作先验知识的来源。然而,这种方法需要在真实数据标签和目标知识图之间有一个映射。我们将ILSVRC 2012数据集(通常简称为ImageNet)标签链接到维基数据实体。这使得可以使用丰富的知识图谱结构和上下文信息来完成几个计算机视觉任务,传统上使用ImageNet及其变体进行基准测试。例如,在使用神经网络的少量学习分类场景中,可以利用这种映射进行权重初始化,这可以提高最终的性能指标值。我们映射了所有1000个ImageNet标签——461个已经直接链接到精确匹配属性(P2888), 467个有精确匹配候选,72个不能直接匹配。对于这72个标签,我们讨论了由于无法找到精确匹配而产生的不同问题类别。语义上接近的非精确匹配候选也被提出。映射是公开的:https://github.com/DominikFilipiak/imagenet-to-wikidata-mapping。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信