Jia Bin Ruan, Tie-hang Wang, Zai-kun Zhao, Liang Zhang, Hong Yin
{"title":"Discussion on Blasting Vibration Velocity of Deep Rock Mass Considering Thickness of Overlying Soil Layer","authors":"Jia Bin Ruan, Tie-hang Wang, Zai-kun Zhao, Liang Zhang, Hong Yin","doi":"10.3311/ppci.22634","DOIUrl":null,"url":null,"abstract":"The thickness of the overlying soil layer has a certain influence on the blasting vibration response of deep rock mass. The vibration wave velocity of the overlying soil layer during the construction of deep blasting is measured in this paper. Based on the measured data, parameters k and α of the Sadowski equation are used to characterize the influence of the comprehensive geological conditions of the site on the vibration wave propagation. The model of blasting vibration velocity of deep rock mass is established according to the existing blasting theory, and the calculation accuracy of the model is verified according to the field blasting parameters. The new model is used to simulate different overlying soil thicknesses, and the safe allowable distance under different soil thicknesses is calculated. The calculated results show that with the increase of the thickness of the overlying soil layer, the blasting vibration velocity decreases and the attenuation velocity decreases gradually. The research results reveal the reduction effect of overlying soil thickness on blasting vibration to some extent. In the area with overlying soil layer, the safe allowable distance of blasting vibration safety can be appropriately reduced to increase the land utilization rate, which has important reference value for the blasting design and safety prediction of deep rock mass.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22634","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The thickness of the overlying soil layer has a certain influence on the blasting vibration response of deep rock mass. The vibration wave velocity of the overlying soil layer during the construction of deep blasting is measured in this paper. Based on the measured data, parameters k and α of the Sadowski equation are used to characterize the influence of the comprehensive geological conditions of the site on the vibration wave propagation. The model of blasting vibration velocity of deep rock mass is established according to the existing blasting theory, and the calculation accuracy of the model is verified according to the field blasting parameters. The new model is used to simulate different overlying soil thicknesses, and the safe allowable distance under different soil thicknesses is calculated. The calculated results show that with the increase of the thickness of the overlying soil layer, the blasting vibration velocity decreases and the attenuation velocity decreases gradually. The research results reveal the reduction effect of overlying soil thickness on blasting vibration to some extent. In the area with overlying soil layer, the safe allowable distance of blasting vibration safety can be appropriately reduced to increase the land utilization rate, which has important reference value for the blasting design and safety prediction of deep rock mass.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.