DETECÇÃO DE FALHAS EM LINHAS DE PLANTIO EM IMAGENS OBTIDAS POR VANT UTILIZANDO CNN E OPERADORES MORFOLÓGICOS

Hélio Monteiro da SILVA FILHO, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri
{"title":"DETECÇÃO DE FALHAS EM LINHAS DE PLANTIO EM IMAGENS OBTIDAS POR VANT UTILIZANDO CNN E OPERADORES MORFOLÓGICOS","authors":"Hélio Monteiro da SILVA FILHO, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2022.v14.n1.e382","DOIUrl":null,"url":null,"abstract":"The world population grows every year, however, the arable lands of the planet are practically all in use or protected by environmental laws. Humanity needs to find ways to increase productivity in the countryside, and one of the ways is by making use of technology. This paper uses computational resources to detect failures in planting lines, through the analysis of plantation images obtained by UAVs. In the developed methodology, CNN, morphological operators and an algorithm were used to draw the planting lines. With the detected failures, the aim is to help rural producers to make better decisions, increase their production and reduce losses. The results obtained were satisfactory, but are closely linked to the quality of the image classification by CNN, which presented an F1 Score around 92%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2022.v14.n1.e382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The world population grows every year, however, the arable lands of the planet are practically all in use or protected by environmental laws. Humanity needs to find ways to increase productivity in the countryside, and one of the ways is by making use of technology. This paper uses computational resources to detect failures in planting lines, through the analysis of plantation images obtained by UAVs. In the developed methodology, CNN, morphological operators and an algorithm were used to draw the planting lines. With the detected failures, the aim is to help rural producers to make better decisions, increase their production and reduce losses. The results obtained were satisfactory, but are closely linked to the quality of the image classification by CNN, which presented an F1 Score around 92%.
利用CNN和形态学算子对无人机图像中种植线的故障检测
世界人口每年都在增长,然而,地球上的可耕地几乎都在使用或受到环境法的保护。人类需要找到提高农村生产力的方法,其中一种方法就是利用技术。本文通过对无人机获取的种植图像进行分析,利用计算资源对种植线进行故障检测。在开发的方法中,使用CNN,形态学算子和算法来绘制种植线。通过检测到的故障,其目的是帮助农村生产者做出更好的决策,增加产量并减少损失。得到的结果是令人满意的,但与CNN的图像分类质量密切相关,其F1得分在92%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信