Python programming predictions of Thermal Behavioral Aspects of Orange Peel and Coconut-Coir Reinforced Epoxy Composites

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
S. Pujari, Alekya Pilla, S. Subramonian, Daniel Mandrumaka
{"title":"Python programming predictions of Thermal Behavioral Aspects of Orange Peel and Coconut-Coir Reinforced Epoxy Composites","authors":"S. Pujari, Alekya Pilla, S. Subramonian, Daniel Mandrumaka","doi":"10.24200/sci.2023.60206.6665","DOIUrl":null,"url":null,"abstract":"Using a hand lay-up approach, both orange peel and coconut coir fibres are used in particulate form with an epoxy matrix to create partly green biodegradable composites. The findings indicate great opportunities for employing these natural fibres. The thermal conductivity of orange peel and coconut-coir epoxy composites was measured experimentally for various volume fractions of particulate fibres. The experimental findings show that as fibre concentration increases, thermal conductivity decreases. Experimental data are compared to theoretical models to determine the change in thermal conductivity with fibre amount fraction. There was a clear correlation between the hypotheses and the actual results. Regression analysis using Python programming is also done for the prediction of the thermal properties of particulate orange peel and coconut-coir fibre composites. It is observed that coir fibre composites outperformed the orange peel, indicating that the coir fibre composite is a proper thermal insulator that can be used in many industries, like the automotive industry, buildings, and steam pipes, to reduce heat transfer and thereby save a lot of energy.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.60206.6665","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using a hand lay-up approach, both orange peel and coconut coir fibres are used in particulate form with an epoxy matrix to create partly green biodegradable composites. The findings indicate great opportunities for employing these natural fibres. The thermal conductivity of orange peel and coconut-coir epoxy composites was measured experimentally for various volume fractions of particulate fibres. The experimental findings show that as fibre concentration increases, thermal conductivity decreases. Experimental data are compared to theoretical models to determine the change in thermal conductivity with fibre amount fraction. There was a clear correlation between the hypotheses and the actual results. Regression analysis using Python programming is also done for the prediction of the thermal properties of particulate orange peel and coconut-coir fibre composites. It is observed that coir fibre composites outperformed the orange peel, indicating that the coir fibre composite is a proper thermal insulator that can be used in many industries, like the automotive industry, buildings, and steam pipes, to reduce heat transfer and thereby save a lot of energy.
橙皮和椰壳增强环氧复合材料热行为方面的Python编程预测
采用手工铺层的方法,橘子皮和椰子纤维都以颗粒形式与环氧树脂基体一起使用,以创造部分绿色可生物降解的复合材料。研究结果表明,利用这些天然纤维有很大的机会。实验测量了不同体积分数的颗粒纤维对柑桔皮和椰壳环氧复合材料的导热性能。实验结果表明,随着纤维浓度的增加,热导率降低。将实验数据与理论模型进行了比较,确定了导热系数随纤维掺量的变化规律。假设和实际结果之间有明显的相关性。用Python编程进行了回归分析,预测了颗粒状橘子皮和椰子椰子纤维复合材料的热性能。观察到,椰子纤维复合材料的性能优于橙皮,表明椰子纤维复合材料是一种合适的隔热材料,可用于许多行业,如汽车工业,建筑和蒸汽管道,以减少热量传递,从而节省大量能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientia Iranica
Scientia Iranica 工程技术-工程:综合
CiteScore
2.90
自引率
7.10%
发文量
59
审稿时长
2 months
期刊介绍: The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas. The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信