{"title":"The weighted spectrum of the universal cover and an Alon–Boppana result for the normalized Laplacian","authors":"Stephen J. Young","doi":"10.4310/joc.2022.v13.n1.a2","DOIUrl":null,"url":null,"abstract":"We provide a lower bound for the spectral radius of the universal cover of irregular graphs in the presence of symmetric edge weights. We use this bound to derive an Alon-Boppana type bound for the second eigenvalue of the normalized Laplacian.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
We provide a lower bound for the spectral radius of the universal cover of irregular graphs in the presence of symmetric edge weights. We use this bound to derive an Alon-Boppana type bound for the second eigenvalue of the normalized Laplacian.