Frequency Domain Data Encoding in Apache IoTDB

Haoyu Wang, Shaoxu Song
{"title":"Frequency Domain Data Encoding in Apache IoTDB","authors":"Haoyu Wang, Shaoxu Song","doi":"10.14778/3565816.3565829","DOIUrl":null,"url":null,"abstract":"\n Frequency domain analysis is widely conducted on time series. While online transforming from time domain to frequency domain is costly, e.g., by Fast Fourier Transform (FFT), it is highly demanded to store the frequency domain data for reuse. However, frequency domain data encoding for efficient storage is surprisingly untouched. We notice that (1) the precision of data value is unnecessarily high after transforming to frequency domain and (2) the data values are with skewed distribution leading to a very large bit width for encoding. To avoid such space waste in both precision and skewness, we devise a\n descending bit-packing\n encoding for frequency domain data. Specifically, we quantize the data values in proper precision referring to the signal-noise-ratio (SNR) in frequency domain analysis. Moreover, we sort the data values in descending order so that the bit width could be dynamically reduced in encoding. The method has been deployed in Apache IoTDB, an open-source time-series database, not only for directly encoding frequency domain data, but also as a lossy compression of the time domain data. The extensive experiments on the system demonstrate the superiority of our encoding for both frequency domain and time domain data.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"17 1","pages":"282-290"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3565816.3565829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Frequency domain analysis is widely conducted on time series. While online transforming from time domain to frequency domain is costly, e.g., by Fast Fourier Transform (FFT), it is highly demanded to store the frequency domain data for reuse. However, frequency domain data encoding for efficient storage is surprisingly untouched. We notice that (1) the precision of data value is unnecessarily high after transforming to frequency domain and (2) the data values are with skewed distribution leading to a very large bit width for encoding. To avoid such space waste in both precision and skewness, we devise a descending bit-packing encoding for frequency domain data. Specifically, we quantize the data values in proper precision referring to the signal-noise-ratio (SNR) in frequency domain analysis. Moreover, we sort the data values in descending order so that the bit width could be dynamically reduced in encoding. The method has been deployed in Apache IoTDB, an open-source time-series database, not only for directly encoding frequency domain data, but also as a lossy compression of the time domain data. The extensive experiments on the system demonstrate the superiority of our encoding for both frequency domain and time domain data.
Apache IoTDB的频域数据编码
频域分析广泛应用于时间序列。虽然从时域到频域的在线转换成本很高,例如通过快速傅里叶变换(FFT),但对存储频域数据以供重用的要求很高。然而,用于高效存储的频域数据编码却令人惊讶地没有受到影响。我们注意到:(1)数据值转换到频域后精度过高,(2)数据值分布偏态,导致编码位宽非常大。为了避免精度和偏度上的空间浪费,我们设计了一种降序位填充编码方法来处理频域数据。具体来说,我们根据频域分析中的信噪比对数据值进行适当精度的量化。此外,我们将数据值按降序排序,以便在编码时动态减小位宽。该方法已在Apache IoTDB(一个开源的时间序列数据库)中得到应用,不仅可以直接对频域数据进行编码,还可以对时域数据进行有损压缩。系统的大量实验证明了我们的编码对频域和时域数据的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信