Seeking pattern recognition principles for intelligent detection of FSK signals

Q4 Computer Science
V. Neagoe
{"title":"Seeking pattern recognition principles for intelligent detection of FSK signals","authors":"V. Neagoe","doi":"10.1109/ICPR.1992.201878","DOIUrl":null,"url":null,"abstract":"Proposes the following cascade for intelligent detection of the presence of binary frequency-shift-keying (FSK) signals corrupted by additive white Gaussian noise: (1) discrete Fourier Transform (DFT) for periodogram estimation, computed at the two modulating frequencies; (2) a specific pattern recognition algorithm in the spectral space IR/sup 2/, consisting of one of the following variants: (a) perceptron; (b) fuzzy perceptron; (c) Bayes. The computer simulation results show the significant improvement of the proposed pattern recognition methods by comparison to the classical technique of detection theory by matched filter. The proposed paper tries to build a bridge between the worlds of communications, signal processing and pattern recognition.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

Proposes the following cascade for intelligent detection of the presence of binary frequency-shift-keying (FSK) signals corrupted by additive white Gaussian noise: (1) discrete Fourier Transform (DFT) for periodogram estimation, computed at the two modulating frequencies; (2) a specific pattern recognition algorithm in the spectral space IR/sup 2/, consisting of one of the following variants: (a) perceptron; (b) fuzzy perceptron; (c) Bayes. The computer simulation results show the significant improvement of the proposed pattern recognition methods by comparison to the classical technique of detection theory by matched filter. The proposed paper tries to build a bridge between the worlds of communications, signal processing and pattern recognition.<>
探索FSK信号智能检测的模式识别原理
提出了用于智能检测被加性高斯白噪声破坏的二进制移频键控(FSK)信号的级联方法:(1)在两个调制频率处计算用于周期图估计的离散傅立叶变换(DFT);(2)光谱空间中特定的模式识别算法IR/sup 2/,由以下变体之一组成:(a)感知器;(b)模糊感知器;贝叶斯(c)。计算机仿真结果表明,与经典的匹配滤波检测理论相比,所提出的模式识别方法有了显著的改进。本文试图在通信、信号处理和模式识别领域之间建立一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信