Numerical Simulation of Structural Optimization for Inlet Pipe of Centrifugal Pump in CAP1400 Power Plant Auxiliary System

Ting Qu, Liang Zhang
{"title":"Numerical Simulation of Structural Optimization for Inlet Pipe of Centrifugal Pump in CAP1400 Power Plant Auxiliary System","authors":"Ting Qu, Liang Zhang","doi":"10.1115/icone2020-16673","DOIUrl":null,"url":null,"abstract":"\n The centrifugal pump is the key equipment for power conversion in the CAP1400 power plant. According to the equipment layout requirements in the nuclear power plant process system design manual, the pipe section at the entrance should be a straight pipe with a length at least five times the pipe diameter. However, in actual layout, due to factors such as plant space or modularity, the layout of the inlet pipes of some centrifugal pumps cannot meet this requirement, resulting in non-uniform incoming flow at the pump inlet, which affects the safe and stable operation of the pump and system. In this paper, two different structures of rectifiers are designed and numerically simulated for the elbow part of the inlet pipe section of the SFS system centrifugal pump in the CAP1400 power plant. Firstly, the variation of flow uniformity of the pump inlet pipe at different inlet speeds is studied. Then, the influence of different structure rectifiers on the uniformity of flow at the pump inlet under the same working conditions is studied. The results show that the addition of a rectifier in the elbow can effectively improve the flow uniformity of the pump inlet section and reduce the effect of uneven inlet flow on the pump performance.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The centrifugal pump is the key equipment for power conversion in the CAP1400 power plant. According to the equipment layout requirements in the nuclear power plant process system design manual, the pipe section at the entrance should be a straight pipe with a length at least five times the pipe diameter. However, in actual layout, due to factors such as plant space or modularity, the layout of the inlet pipes of some centrifugal pumps cannot meet this requirement, resulting in non-uniform incoming flow at the pump inlet, which affects the safe and stable operation of the pump and system. In this paper, two different structures of rectifiers are designed and numerically simulated for the elbow part of the inlet pipe section of the SFS system centrifugal pump in the CAP1400 power plant. Firstly, the variation of flow uniformity of the pump inlet pipe at different inlet speeds is studied. Then, the influence of different structure rectifiers on the uniformity of flow at the pump inlet under the same working conditions is studied. The results show that the addition of a rectifier in the elbow can effectively improve the flow uniformity of the pump inlet section and reduce the effect of uneven inlet flow on the pump performance.
CAP1400电厂辅助系统离心泵进水管结构优化数值模拟
离心泵是CAP1400电站电力转换的关键设备。根据核电站工艺系统设计手册中的设备布置要求,入口管段应为直管,长度至少为管径的5倍。但在实际布置中,由于厂房空间或模块化等因素,部分离心泵进水管的布置不能满足这一要求,导致泵入口处来流不均匀,影响了泵和系统的安全稳定运行。本文针对CAP1400电厂SFS系统离心泵进气管段弯头部分设计了两种不同结构的整流器,并进行了数值模拟。首先,研究了不同进口速度下泵进气管内流动均匀性的变化规律。然后,研究了在相同工况下,不同结构的整流器对泵入口流动均匀性的影响。结果表明,在弯头处增设整流器可有效改善泵入口段的流动均匀性,减少进口流动不均匀对泵性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
922
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信