Attacks and Counter Defense Mechanisms for CBTC Systems: System Modeling and Availability Analysis

Wenhao Wu, Bing Bu, Wei Zhang
{"title":"Attacks and Counter Defense Mechanisms for CBTC Systems: System Modeling and Availability Analysis","authors":"Wenhao Wu, Bing Bu, Wei Zhang","doi":"10.1109/ITSC.2019.8917082","DOIUrl":null,"url":null,"abstract":"Communication-based train control (CBTC) are automated train control systems using information communication technologies to ensure the safe operation of rail vehicles. With the development of information technology, massive commercial software, hardware products and standard communication equipment are applied to urban rail transit systems, which introduces a crowd of security threats to CBTC systems. This paper proposes a generalized stochastic Petri net model to simulate dynamic interaction between the attacker and defender to evaluate the security of CBTC systems. According to the characteristics of the system and attack-defense methods, we divide our model to the penetration phase and the disruption phase. In each phase, we provide effective means of attack and corresponding defensive measures, and the system state is determined correspondingly. The model parameters are obtained by conducting attack and defense exercises on the semi-physical simulation platform. The system transition probability is derived with the model parameter and the Nash equilibrium of the game between the attacker and defender. The system availability is obtained by calculating the steady probability of each state which can be derived from the GSPN model solution. Our analytic results reveal the seriousness of the system security situation and the significance of defensive measures for system security.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"17 1","pages":"2521-2526"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Communication-based train control (CBTC) are automated train control systems using information communication technologies to ensure the safe operation of rail vehicles. With the development of information technology, massive commercial software, hardware products and standard communication equipment are applied to urban rail transit systems, which introduces a crowd of security threats to CBTC systems. This paper proposes a generalized stochastic Petri net model to simulate dynamic interaction between the attacker and defender to evaluate the security of CBTC systems. According to the characteristics of the system and attack-defense methods, we divide our model to the penetration phase and the disruption phase. In each phase, we provide effective means of attack and corresponding defensive measures, and the system state is determined correspondingly. The model parameters are obtained by conducting attack and defense exercises on the semi-physical simulation platform. The system transition probability is derived with the model parameter and the Nash equilibrium of the game between the attacker and defender. The system availability is obtained by calculating the steady probability of each state which can be derived from the GSPN model solution. Our analytic results reveal the seriousness of the system security situation and the significance of defensive measures for system security.
CBTC系统的攻击与反防御机制:系统建模与可用性分析
基于通信的列车控制(CBTC)是利用信息通信技术来保证轨道车辆安全运行的自动化列车控制系统。随着信息技术的发展,大量商用软件、硬件产品和标准通信设备应用于城市轨道交通系统,给轨道交通系统带来了诸多安全威胁。本文提出了一种广义随机Petri网模型来模拟攻击者和防御者之间的动态交互,以评估CBTC系统的安全性。根据系统的特点和攻防方法,将模型分为渗透阶段和破坏阶段。在每个阶段,我们提供了有效的攻击手段和相应的防御措施,并相应地确定了系统状态。模型参数通过在半物理仿真平台上进行攻防演练得到。利用模型参数和攻防双方博弈的纳什均衡,导出了系统转移概率。通过计算系统各状态的稳定概率,得到系统的可用性。我们的分析结果揭示了系统安全形势的严重性和防御措施对系统安全的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信