Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang
{"title":"Orthogonal Inner Product Graphs over Finite Fields of Odd Characteristic","authors":"Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang","doi":"10.1155/2023/6811540","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> be a finite field of odd characteristic and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula> be an integer with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>δ</mi>\n <mo>=</mo>\n <mn>0,1</mn>\n </math>\n </jats:inline-formula>, or 2. The orthogonal inner product graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> over <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is defined, and a class of subgroup of the automorphism groups of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is determined. We show that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a disconnected graph if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>=</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula>; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, which are in the same orbit under the action of a subgroup of the automorphism group of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"105 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6811540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite field of odd characteristic and be an integer with , or 2. The orthogonal inner product graph over is defined, and a class of subgroup of the automorphism groups of is determined. We show that is a disconnected graph if ; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of , respectively, which are in the same orbit under the action of a subgroup of the automorphism group of .