{"title":"Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes","authors":"S. Hamid, Woojin Lee","doi":"10.12989/AER.2015.4.4.263","DOIUrl":null,"url":null,"abstract":"In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to 300 mg/L NO3-N. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ≥ 33 mg catalyst / mg NO3-N. Maximum nitrogen selectivity (47%) was observed at 66 mg catalyst / mg NO3-N, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg NO3 -N/gcatalyst /h. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"23 1","pages":"263-271"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AER.2015.4.4.263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to 300 mg/L NO3-N. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ≥ 33 mg catalyst / mg NO3-N. Maximum nitrogen selectivity (47%) was observed at 66 mg catalyst / mg NO3-N, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg NO3 -N/gcatalyst /h. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.