{"title":"A Detection Sensitivity Analysis Model for Structural Health Monitoring to Inspect Wall Thinning considering Random Sensor Location","authors":"Haicheng Song, N. Yusa","doi":"10.1080/09349847.2021.1883167","DOIUrl":null,"url":null,"abstract":"ABSTRACT Structural health monitoring (SHM), which allows the detection of defects at an early stage by attaching sensors to the target, is an effective method of enhancing the reliability and the safety of important engineering structures. One of the practical difficulties of SHM is that usually a large area must be monitored using a limited number of sensors fixed at certain locations. And the sensor placement is a decisive contributor to the detection capability of SHM because measured signals generally depend on the location of a defect with respect to a sensor. In order to quantify the detection sensitivity more reasonably, this study proposes an analytical method based on a closed-form probability density function and a numerical method based on Monte Carlo simulation to quantify the detection sensitivity, taking into account the randomness of sensor location. The effectiveness of the proposed detection sensitivity analysis model has been examined using simulated inspection signals of low frequency electromagnetic monitoring for detecting full circumferential pipe wall thinning.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"32 1","pages":"74 - 87"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2021.1883167","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Structural health monitoring (SHM), which allows the detection of defects at an early stage by attaching sensors to the target, is an effective method of enhancing the reliability and the safety of important engineering structures. One of the practical difficulties of SHM is that usually a large area must be monitored using a limited number of sensors fixed at certain locations. And the sensor placement is a decisive contributor to the detection capability of SHM because measured signals generally depend on the location of a defect with respect to a sensor. In order to quantify the detection sensitivity more reasonably, this study proposes an analytical method based on a closed-form probability density function and a numerical method based on Monte Carlo simulation to quantify the detection sensitivity, taking into account the randomness of sensor location. The effectiveness of the proposed detection sensitivity analysis model has been examined using simulated inspection signals of low frequency electromagnetic monitoring for detecting full circumferential pipe wall thinning.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.